VOODOO'S INTRODUCTION TO JAVASCRIPT
© 1996, 1997 by Stefan Koch

Part 3: Frames

Creating frames

An often asked question is how frames and JavaScript work together. First I want to explain what frames are and what they can be used for. After this we will see how we can use JavaScript in combination with frames.
The browser window can be split up into several frames. This means a frame is a square area inside the browser window. Each frame displays its own document (most of the time HTML-documents). So you can for example create two frames. In the first frame you load the homepage of Netscape and in the second frame you load the homepage of Microsoft.
Although creating frames is a HTML-problem I want to describe the basic things. For creating frames you need two tags: <frameset> and <frame>. A HTML-page creating two frames might look like this:

<html>

<frameset rows="50%,50%">

 <frame src="page1.htm" name="frame1">

 <frame src="page2.htm" name="frame2">

</frameset>

</html>

This will produce two frames. You can see that we use the rows property in the <frameset> tag. This means the two frames lie above each other. The upper frame loads the HTML-page page1.htm and the lower frame displays the document page2.htm. If you push the button you can see what this looks like:

Top of Form

Bottom of Form

If you want to have columns instead of rows you write cols instead of rows in the <frameset> tag. The "50%,50%" part specifies how large the two windows are. You can also write "50%,*" if you do not want to calculate how large the second frame must be in order to get 100%. You can specify the size in pixels by omitting the % symbol.
Every frame gets an unique name with the name property in the <frame> tag. This will help us when accessing the frames through JavaScript.

You can have several nested <frameset> tags. I've found this example in the documentation provided by Netscape (I just modified it a little bit):

<frameset cols="50%,50%">

 <frameset rows="50%,50%">

 <frame src="cell.htm">

 <frame src="cell.htm">

 </frameset>

 <frameset rows="33%,33%,33%">

 <frame src="cell.htm">

 <frame src="cell.htm">

 <frame src="cell.htm">

 </frameset>

</frameset>

Have a look at this example:

Top of Form

Bottom of Form

You can set the size of the border through the border property in the <frameset> tag. border=0 means that you do not want to have a border.

 Frames and JavaScript
Now we want to have a look at how JavaScript 'sees' the frames in a browser window. For this we are going to create two frames as shown in the first example of this part.
We have seen that JavaScript organizes all elements on a web page in a hierarchy. This is the same with frames. The following image shows the hierarchy of the first example of this part:

At the top of the hierarchy is the browser window. This window is split up into two frames. The window is the parent in this hierarchy and the two frames are the children. We gave the two frames the unique names frame1 and frame2. With the help of these names we can exchange information between the two frames.

A script might have to solve the following problem: The user clicks on a link in the first frame - but the page shall be loaded in the second frame rather than in the first frame. This can for example be used for menubars (or navigationbars) where one frame always stays the same and offers several different links to navigate through a homepage.
We have to look at three cases:

· parent window/frame accesses child frame

· child frame accesses parent window/frame

· child frame accesses another child frame

From the window's point of view the two frames are called frame1 and frame2. You can see in the image above that there is a direct connection from the parent window to each frame. So if you have a script in the parent window - this means in the page that creates the frames - and you want to access the frames you can just use the name of the frame. For example you can write:

frame2.document.write("A message from the parent window.");

[image: image1.png]
Sometimes you want to access the parent window from a frame. This is needed for example if you want to remove the frames. Removing the frames just means to load a new page instead of the page which created the frames. This is in our case the page in the parent window. We can access the parent window (or parent frame) from the child frames with parent. In order to load a new document we have to assign a new URL to location.href. As we want to remove the frames we have to use the location-object of the parent window. As every frame can load its own page we have a different location-object for each frame. We can load a new page into the parent window with the command:

parent.location.href= "http://...";

[image: image2.png]
Very often you will be faced with the problem to access one child frame from another child frame. So how can you write something from the first frame to the second frame - this means which command do you have to use in the HTML-page called page1.htm? In our image you can see that there is no direct connection between the two frames. This means we cannot just call frame2 from the frame frame1 as this frame does not know anything about the existence of the second frame. From the parent window's point of view the second frame is called frame2 and the parent window is called parent seen from the first frame. So we have to write the following in order to access the document-object of the second frame:

parent.frame2.document.write("Hi, this is frame1 calling.");

[image: image3.png]
Navigationbars

Let's have a look at a navigationbar. We will have several links in one frame. If the user clicks on these links the pages won't show up in the same frame - they are loaded in the second frame.

Here is the example:

Top of Form

Bottom of Form

First we need a script which creates the frames. This document looks like the first example we had in this part:

frames3.htm

<html>

<frameset rows="80%,20%">

 <frame src="start.htm" name="main">

 <frame src="menu.htm" name="menu">

</frameset>

</html>

The start.htm page is the entry page which will be displayed in the main frame at the beginning. There are no special requirements for this page.
The following page is loaded into the frame menu:

menu.htm

<html>

<head>

<script language="JavaScript">

<!-- hide

function load(url) {

 parent.main.location.href= url;

}

// -->

</script>

</head>

<body>

first

second

third

</body>

</html>

Here you can see different ways for loading a new page into the frame main. The first link uses the function load(). Have a look at how this function is called:

first

You can see that we can let the browser execute JavaScript code instead of loading another page - we just have to use javascript: in the href property. You can see that we write 'first.htm' inside the brackets. This string is passed to the function load(). The function load() is defined through:

function load(url) {

 parent.main.location.href= url;

}

There you can see that we write url inside the brackets. This means that the string 'first1.htm' is stored in the variable url. Inside the load() function we can now use this variable. We will see further examples of this important concept of variable passing later on.
The second link uses the target property. Actually this isn't JavaScript. This is a HTML-feature. You see that we just have to specify the name of the frame. Please note that we must not put parent before the name of the frame. This might be a little bit confusing. The reason for this is that target is HTML and not JavaScript.
The third link shows you how to remove the frames with the target property.
If you want to remove the frames with the load() function you just have to write parent.location.href= url inside the function.

So which way should you choose? This depends on your script and what you want to do. The target property is very simple. You might use it if you just want to load the page in another frame. The JavaScript solution (i.e. the first link) is normally used if you want to do several things as a reaction to the click on the link. One common problem is to load two pages at once in two different frames. Although you could solve this with the target property using a JavaScript function is more straightforward. Let's assume you have three frames called frame1,frame2 and frame3. The user clicks on a link in frame1. Then you want to load two different pages in the two other frames. You can use this function for example:

function loadtwo() {

 parent.frame1.location.href= "first.htm";

 parent.frame2.location.href= "second.htm";

}

If you want to keep the function more flexible you can use variable passing here as well. This looks like this:

function loadtwo(url1, url2) {

 parent.frame1.location.href= url1;

 parent.frame2.location.href= url2;

}

Then you can call this function with loadtwo("first.htm", "second.htm") or loadtwo("third.htm", "forth.htm"). Variable passing makes your function more flexible. You can use it over and over again in different contexts.

©1996,1997 by Stefan Koch
e-mail:skoch@rumms.uni-mannheim.de
http://rummelplatz.uni-mannheim.de/~skoch/
My JavaScript-book

Use Target attributes to direct pages

Generally, a hyperlink reference replaces the current page with the page where the hyperlink is anchored. The Target attribute, however, can be used to direct where this new page appears. If you've worked with frames, you're probably already aware of this capability. For those that aren't, here are the values and their behaviors.

	_blank
	Loads the designated document in a new, unnamed window

	_self
	Loads the document in the same frame as the element that refers to this target

	_parent
	Loads the document into the immediate frame-set parent of the current frame. If there is no parent, it works the same as _self

	_top
	Loads the document into the full, original window (thus canceling all other frames)

Since the rules that govern these values are self-evident, here are a couple of caveats you should follow:

1. Even if a specific hyperlink doesn't specify a target, it might be defaulting to the target attribute set in the BASE element higher up in the page

2. If you target an unknown frame in frames, the specification says that the user agent (in this case, the browser), should create a new window and frame, assign the new frame to the targeted frame's name, and then load the document into that frame.

If you think you're targeting a frame for loading a specific document but a new window keeps appearing, you will know where to go to find the problem.

Frameset Communication

A common problem that occurs with frames is that child frame one was trying to talk to child frame two, but child frame two hadn't loaded up yet... so it produced an error.

The general rule of thumb is never communicate with a frame until you KNOW it is loaded. How do you know a frame is loaded? Can you just assume that the frames load in order of appearance on the page? Well, you could in some older browsers, but some programmer over at Netscape decided that the order in which frames loaded wasn't all that important, so he removed that feature. So you can never be sure that the frames will be loaded in order.

For example, if your display frame needs some info from your data frame, your data frame needs to let the display frame know as soon as it is ready (loaded). But what if the display frame is downloaded before the data frame? Can JavaScript just tell it to pause and wait until the data frame is loaded? Yes and no. It depends on whether you need to make document.write() calls in your display frame.

Any document.write() calls must be called inline as the page is being loaded. And you can't just tell the page to pause in loading until you are ready, either. Once a page is completed loading, if you call document.write(), it will clear the page (not just add the stuff to the bottom as you might suspect).

The first way basic way is that you must load a filler frame in place of the display frame. Then, when the data frame is loaded, JavaScript triggers the load of display frame.

The second category of frame communication doesn't involve any document.write() calls in the display frame. Now once a frame is loaded, JavaScript can pause and wait for the data until the data frame is ready.

The key to both of these solutions hinges on this one concept: Since you don't know in which order the child frames will be loaded, the only sure thing is for a child frame to talk to the parent frameset. Because the parent frameset must be loaded before the child frames, it must serve as the master controller.

Colored Frames

Top of Form

colorString Value
[image: image4.wmf]

 #70cf7a

Bottom of Form

<SCRIPT>

function setcolor(w) {
 // Generate a random color
 var r = Math.round(Math.random() * 256).toString(16);
 var g = Math.round(Math.random() * 256).toString(16);
 var b = Math.round(Math.random() * 256).toString(16);
 var colorString = "#" + r + g + b;

 w.document.bgColor = colorString; // Set the frame bkgnd to the random color

 // Schedule another call to this method in one second.
 // We can call the setTimeout() as a Method of the frame,
 // the string will be executed in that context,
 // so we must prefix properties of the top-level window with "parent."
 // w.setTimeout("parent.setcolor(parent." + w.name + ")", 1000);

 // We could also have done the same thing more simply like this.
 setTimeout("setcolor(" + w.name + ")", 1000);

// NOTE: The name property of any Window object contains the name of that window.
}

</SCRIPT>

<FRAMESET
 onLoad="for (var i = 0; i < 9; i++) setcolor(frames[i]);" rows="33%, 33%, 34%">
 <FRAMESET COLS="33%, 33%, 34%">
 <FRAME NAME="f1">
 <FRAME NAME="f2">
 <FRAME NAME="f3">
 </FRAMESET>
 etc…
 </FRAMESET>
 <FRAMESET COLS="33%, 33%, 34%">
 <FRAME NAME="f7">
 <FRAME NAME="f8">
 <FRAME NAME="f9">
 </FRAMESET>
 <NOFRAMES>
 <BODY>
 </BODY>
 </NOFRAMES>
</FRAMESET>

Escaping Frames

When you create a Web page, you expect the user to load it in the browser's main window. You don't want it to be loaded in another site's frame. By adding a simple cross-browser, cross-platform script into the <HEAD> portion of your document, you can ensure that the page loads in the entire window. Here's the script:

<SCRIPT>

if (window != top) top.location.href = location.href;

</SCRIPT>

The condition evaluates to true only if window is not equal to top. In other words, if the page's direct window isn't the topmost window in the browser, the condition evaluates to true.

top is the highest window object in the hierarchy. If the topmost page doesn't feature any frames, the object model has only one level of window objects, so top is equal to window. However, if the browser is currently displaying a frame-based document, each child frame has a corresponding window object.

Note that the following expressions would also function properly:

window != parent
self != top

So back to the script, if the page's window isn't the topmost window in the object model, your page is being displayed as a frame in a frame-setting document. In order to escape the frames, you need to set the URL of the upper window to the URL of the current page:

if (window != top) top.location.href = location.href;

Keeping a page out of Frame
To prevent a page from appearing within a frameset we can force a page to always be in the browser window by itself.

In JavaScript, windows appear in a hierarchy, with the parent window at the top of the heap.

<SCRIPT>

/*
check to see if the location of the current page (self) is the top-most in the browser in the window hierarchy. If it is everything is OK & nothing needs to be done, if not then force it to be the top page by top.location = self.location. EXPLANATION: window.top (or top for short since it is understood to be the window) is a window object that is the top-level window that contains the window. If window is a top-level window itself, the top property simply contains a reference to window itself. If window is a frame, the top property contains a reference to the top-level window that contains the frame. NOTE: the property refers to a top-level window even if window refers to a frame contained within another frame (which may itself be contained within a frame, and so on).
*/

if (top.location != self.location) top.location = self.location;

</SCRIPT>

<BODY>

<H1>A really important page here that everyone wants to steal</H1>

Forcing a page to be in a Frame
<SCRIPT>

/*
if the current page (self) is at the top-most level, then replace the current page with the URL of the frameset. The frameset will then load the current page into its appropriate frame.
*/

if (top.location == self.location) top.location.href = "frameset.htm";

</SCRIPT>

<BODY>

<H1>A page that should always be within a frame</H1>

Passing Information from one Frame to another
The FrameSet

<FRAMESET COLS="50%,*">
 <FRAME SRC="input.htm" NAME="input">
 <FRAME SRC="output.htm" NAME="output">
</FRAMESET>

The Input Frame
<SCRIPT>

/* this function takes value from an input box on this frame & then passes results to a textarea box on another frame. eval() calculates the mathematical expression. */

function update(field) {
 var result = field.value;
 var output = result + " = " + eval(result);
 parent.frames[1].document.forms[0].result.value = output;
}

/* here we get the value from an input box on another frame & then pass the result back to the very same input box on the other frame. */

function passinfo(form) {
 var result = form.inputfld.value;
 var output = result + " = " + eval(result);
 parent.output.document.form2.inputfld.value = output;
}

</SCRIPT>

<FORM>
 <INPUT TYPE="text" NAME="input" onChange="update(this);">
</FORM>

The Output Frame
<FORM>
 <TEXTAREA NAME="result">
 </TEXTAREA>
</FORM>

NOTE: onClick causes a call to be made to a function in another frame

<FORM NAME="form2">
 <INPUT TYPE="text" NAME="inputfld">
 <INPUT TYPE="button" VALUE="Calculate"
 onClick="parent.input.passinfo(this.form);">
</FORM>

The HTML tester page

FrameSet Page Information

<FRAMESET COLS="50%,*">
 <FRAME SRC="htmlform.htm" NAME="choose">
 <FRAME SRC="sample.htm" NAME="output">
</FRAMESET>

HTML tester page Source Code
<SCRIPT>

function display(form) {
 var format = form.toDisplay.value;
 var doc = parent.output;

 format = (form.big.checked) ? format.big() : format;
 format = (form.blink.checked) ? format.blink() : format;
 format = (form.bold.checked) ? format.bold() : format;
 format = (form.fixed.checked) ? format.fixed() : format;
 format = (form.italics.checked) ? format.italics() : format;
 format = (form.small.checked) ? format.small() : format;
 format = (form.strike.checked) ? format.strike() : format;
 format = (form.sup.checked) ? format.sup() : format;
 format = (form.sub.checked) ? format.sub() : format;
 format = (form.color.value == "") ? format.fontcolor("black") :
 format.fontcolor(form.color.value);
 format = (form.size.value == "") ? format.fontsize(3) :
 format.fontsize(form.size.value);

 var result = "<CENTER>The HTML code: <XMP>";
 result += format;
 result += "</XMP> looks like:<P>"
 result += format;
 result += "</CENTER>";

 doc.document.open("text/html");
 doc.document.write(result);
 doc.document.close();
}

</SCRIPT>

<BODY>

Please enter some text, select some attributes and enter a color and size (from 1 to 7).

The display will update dynamically.

<FORM>
 <TEXTAREA NAME="toDisplay" onChange="display(this.form);">
 Enter Text Here
 </TEXTAREA>

 <INPUT TYPE="checkbox" NAME="big" onClick="display(this.form);">Big
 <INPUT TYPE="checkbox" NAME="blink" onClick="display(this.form);">Blinking
 <INPUT TYPE="checkbox" NAME="bold" onClick="display(this.form);">Bold
 <INPUT TYPE="checkbox" NAME="small" onClick="display(this.form);">Small
 <INPUT TYPE="checkbox" NAME="strike"
 onClick="display(this.form);">Striking Out
 <INPUT TYPE="checkbox" NAME="sub" onClick="display(this.form);">Subscript
 <INPUT TYPE="checkbox" NAME="sup"
 onClick="display(this.form);">SuperScript

 Font Color:
 <INPUT TYPE="text" NAME="color" VALUE="black"
 onChange="display(this.form);">
 Font Size (1 to 7):
 <INPUT TYPE="text" NAME="size" VALUE="3"
 onChange="display(this.form);">
</FORM>

<SCRIPT>

display(document.forms[0]);

</SCRIPT>

Resume - Top Frame Source Code

<SCRIPT>

var link = new Array();
link[0] = "pers.htm";
link[1] = "tech.htm";
link[2] = "exp.htm";
link[3] = "more.htm";

function subject(index){
 top.frames[1].location = link[index];
}

</SCRIPT>

<FORM>
 <SELECT onChange="subject(this.selectedIndex);">
 <OPTION SELECTED>Personal information </OPTION>
 <OPTION>Technical summary </OPTION>
 <OPTION>Professional experience </OPTION>
 <OPTION>More info </OPTION>
 </SELECT>
</FORM>

Resume - Bottom Frame Source Code

<SCRIPT>

var LB = "\n"; // shortcut for Line Break

var info = new Array();
// first textarea data item
info[0] = "MA - Computer Science, Stanford University - (1994)."
 + LB + LB + "BA - Mathematics, Washington Universtiy - (1992).";
// second textarea data item
info[1] = "Bilingual:"
 + LB + "- French"
 + LB + "- English";
// third textarea data item
info[2] = "- Marital Status: Single"
 + LB + "- Nationality: American"
 + LB + "- Age: 26"
 + LB + "- Birth: St. Louis, MO";

function data(index) {
 document.resume.info.value = info[index];
}

</SCRIPT>

<BODY onLoad="document.resume.info.value=info[0]">

<FORM NAME="resume">
 <SELECT onChange="data(selectedIndex);" SIZE="3">
 <OPTION SELECTED>Education </OPTION>
 <OPTION>Written and spoken languages </OPTION>
 <OPTION>Personal Information </OPTION>
 </SELECT>
 <TEXTAREA NAME="info">
 </TEXTAREA>
</FORM>

window Object

[image: image5.png]
Introduction to JavaScript Pop-up Windows
For most people, the main browser window is the only one they ever use or need. However, it is possible for another window to be opened up to allow you to either view another page while retaining the existing page in the main window, or to open up a remote window that can control or be controlled by the main browser window.

Open new window

OR
<FORM ACTION="testpage.htm" TARGET="anotherWindowName">
 <INPUT TYPE="SUBMIT" VALUE="Open new window">
</FORM>

As long as the TARGET attribute specifies a window name that is not already open, a new window will be created mimicking the existing window. If the window already exists, then the contents will be changed instead.

The problem with this approach is that apart from the window name there is nothing in common between the two windows. You can change the location of the new window using a similar link for form target - but that's it. Whereas using JavaScript and the window.open() method, it is possible to control the look and feel of the new window, to have control over its contents, and also to be controlled by the new window.

Window open syntax
The syntax of the open() method is fairly straight forward:

windowHandle = window.open([URL [, windowName [, features]]])

windowHandle
The result of the open() method is returned and held in the variable to the left of the assignment operator (=). This is a reference or handle to the newly opened window. It can be used to close the window, and to interrogate and alter the windows properties - more on this later.

URL
This is the relative or absolute URL of the file to be loaded into the pop-up window, for example:

<SCRIPT>
 var myWindow = open('http://espn.go.com/');
</SCRIPT>

Open Next Page

<FORM>
 <INPUT TYPE="BUTTON" onClick="window.open('picture.gif')">
</FORM>

If no URL is specified, a new window with about:blank will be displayed.

windowName
This is the target name of the new window. So you could load another document into it with:

<SCRIPT>
 window.open('testpage.htm','myWindow');
</SCRIPT>

load file into popup window

The elements of a browser window. The names in this figure correspond to the parameters you can apply in the open() command. open("URL", "windowname", "featureList");

"featureList"
	NAME
	DESCRIPTION

	copyhistory
	Indicates whether the history list of the current window should be copied to the new window

	directories
	Creates the standard directory buttons

	height
	Specifies the window height in pixels

	left
	The X-coordinate, in pixels, of the window.

	location
	Creates the location entry field

	menubar
	Creates the menu at the top of the window

	resizable
	Enables resizing of the window by the user

	scrollbars
	Creates scroll bars when the document grows beyond the current window

	status
	Creates the status bar

	toolbar
	Creates the standard toolbar

	top
	The Y-coordinate, in pixels, of the window.

	width
	Specifies the window width in pixels

scriptWin = window.open('script.htm', 'Script', 'width=500,height=400')

The variable scriptWin has an open window object, containing the file 'script.htm'. The name of this new window is Script. The Name attribute allows you to reference this window through JavaScript. The new window has a width of 500 pixels & a height of 400 pixels; these parameters are optional.

Adding parameters to windows
To add one or more of the parameters shown above state them in the open() command enclosed in single quotes, with =yes after the name of the feature you want and =no after one you don't want. For example, if you want a window of a specified size with a toolbar, location box, and scrollbars, you would type the following:

'toolbar=yes,location=yes,scrollbars=yes,width=300,height=300'

as part of the open() command. NOTE: Be sure not to leave any spaces between the commas. This particular window would not be resizable, have directory buttons, nor have a status bar. NOTE: with the exception of width & height, which take integer values, all of these features can be set to true with the value of yes or 1 or set to false with a value of no or 0.

An important point about the open() method is that it is almost always invoked as window.open(), even though window refers to the global object and should therefore be entirely optional. The reason that window is specified explicitly is that the Document object also has an open() method, so specifying window.open() helps to make clear what we are trying to do. This is not only a helpful habit; it is required in some circumstances.

The second, optional argument in the open() method is a name for the newly created window. When you create a frame with the HTML <FRAME> tag, you can specify a name with the NAME attribute. An important reason to specify names for the windows and frames is that those names can be used as the value of the TARGET attribute of the <A>, <MAP>, and <FORM> tags. This tells the browser where you want the results of activating a link, clicking on an image map, or submitting a form to be displayed.

You can only automatically close windows that your own JavaScript code has created. If you attempt to close any other window, the user is presented with a dialog box that asks him or her to confirm (or cancel) that request to close the window. This prevents inconsiderate web sites from closing your main browsing window.

Properties of the Window Object
	NAME
	DESCRIPTION

	frames
	Array of objects containing an entry for each child frame in a frameset document.

	document
	The document object for the document currently loaded in the window.

	location
	An object reflecting the current URL loaded in the window.

	opener
	Refers to the window containing the document that opened the current document. This is only has a value if the current window was opened or created with the open() method.

	parent
	The FRAMESET in a FRAMESET – FRAME relationship.

	self
	The current window – use this to distinguish between windows and forms of the same name.

	top
	The top-most parent window.

	status
	The value of the text displayed in the window’ s status bar. This can be used to display status messages to the user.

	defaultStatus
	The default value displayed in the status bar.

Methods of the Window Object
	NAME
	DESCRIPTION

	alert()
	Displays a message in a dialog box with an OK button.

	blur()
	Removes focus from a window. In most versions of Navigator, this sends the window to the background.

	confirm()
	Displays a message in a dialog box with OK and Cancel buttons. This returns true when the user clicks on OK, false otherwise

	close()
	Closes the current window

	focus()
	Gives input focus to a window. In most versions of Navigator, this brings the window to the front.

	open()
	Opens a new window with a specified document or opens the document in the specified named window.

	prompt()
	Displays a message in a dialog box along with a text entry field.

	scroll()
	Scrolls the window to a coordinate specified by an x,y coordinate passed as arguments to the method.

	setTimeout()
	Sets a timer for a specified number of milliseconds and then evaluates an expression when the timer has finished counting. Program operation continues while the timer is counting down.

	closeTimeout()
	Cancels a previously set timeout.

Positioning New Opened Windows

Do you know where window.open() opens your new windows? Using this JavaScript, you can actually have the new window open wherever you want! Look at our example to see what we mean!
etc…
[image: image6.wmf]Window: 300 pixels from left & top

etc…

<SCRIPT>

// Example of the last Function (Window: 300 pixels from left & top)
function openThreehundred() {
 var three = open("", "three", "height=250,width=250,left=300,top=300");

 three.document.write(
 '<HTML>'
 + '<HEAD><TITLE>Windows!</TITLE></HEAD>'
 + '<BODY bgColor="white">'
 + '<TABLE HEIGHT="100%" WIDTH="100%" BORDER="0">'
 + '<TR><TD ALIGN="center" VALIGN="center" WIDTH="100%">'
 + '<P>'
 + ''
 + 'This window is:
 300 pixels from left
300 pixels from top'
 + '.'
 + '</TD></TR>'
 + '</TABLE>'
 + '</BODY>'
 + '</HTML>'
);
}

</SCRIPT>

Pop-Up Centered Window

<SCRIPT>

function OpenNewWin(URL) {
 var screenW = (screen.width / 2) - (580 / 2);
 var screenH = (screen.height / 2) - (400 / 2);

 newWindow = open(URL, "newWin","
 "width=580,height=400,top=" + screenH + ",left=" + screenW);
}

OpenNewWin("gallery.htm")

</SCRIPT>

Shifting focus between the multiple Windows - onClick

<SCRIPT>

/*
create two variables & fill them with the window.open command and their respective parameters.
*/

mapWindow = open('images/barnum.gif', 'mapWin',
 'toolbar=yes,scrollbars=yes,width=300,height=300')

directionsWindow = open('dir.htm', 'pageWin', 'width=225,height=200')

/* the script pulls the directionsWindow to the front of the layers of windows */

function directionsToFront() {

directionsWindow.focus()

}

</SCRIPT>

NOTE: by clicking on the first link the mapWindow is moved to the front of the layers of windows by using the window method focus()

Look at the map

NOTE: by clicking on the second link you are calling the function directionsToFront() to bring the appropriate child window the very front

Look at the directions

Shifting focus between the multiple Windows - onMouseOver

<SCRIPT>

mapWindow = open('barnum.gif', 'mapWin',
 'toolbar=yes,scrollbars=yes,width=300,height=300')

dirWindow = open('dir.htm', 'dirWin', 'width=225,height=200')

</SCRIPT>

Look at the map

Look at the directions

Passing Information
from the Child Window to the Parent Window

The "Parent" Window

<SCRIPT>

/*
 tells the browser to create a child window, using the "little.htm" file, and naming it newWin. The rest of the line specifies the child's "featureList".
 */

newWindow = open('little.htm', 'newWin',
 'toolbar=yes,location=yes,scrollbars=yes,width=300,height=100');

</SCRIPT>

<BODY>

<FORM NAME="outputForm">
 <INPUT TYPE="TEXT" NAME="msgLine" VALUE>
</FORM>

The "Child" Window
<SCRIPT>

/* the textfield is the value passed from the form below (on this child page) */

function updateParent(textField) {

/*
 the opener property is how JavaScript references back to the parent document that opened the child window. So what we are doing here is assigning "Hello " + textField.value + "!" to the text box contained in the form outputForm on the parent document that spawned this window
*/

 opener.document.outputForm.msgLine.value = "Hello " + textField.value + "!";

}

</SCRIPT>

<BODY>

<FORM>
 <INPUT TYPE="TEXT" onBlur="updateParent(this);">
</FORM>

Passing Information
from the Parent Window to the Child Window

<SCRIPT>

/* opens a new window, set its parameters, & assigns it to the variable newWindow */

newWindow = open('', 'newWin',
 'toolbar=yes,location=yes,scrollbars=yes,resizable=yes,width=300,height=300')

/*
here the script is writing into the document window represented by newWindow the HTML headers the first part of the page body
*/

newWindow.document.write("
<HTML>
<HEAD><TITLE>Generated Window</TITLE></HEAD>
<BODY BGCOLOR=WHITE>
<H2>This window shows the result from the other window</H2>"
);

/*
this loop generates numbers from 0 to 99, these number are written to the child window as part of the document
*/

for (i = 0; i < 100; i++) {
 newWindow.document.write("
The loop is now at: " + i);
}

/* this closes the HTML page */

newWindow.document.write("
</BODY>
</HTML>"
);

/* once everything has been completed close the document window */

newWindow.document.close()

</SCRIPT>

<BODY>

<H1>This window is looping madly!</H1>

Opening & Closing Child Windows

<SCRIPT>

function openWindow() {
 var newWindow = window.open('', 'newWin',
 'toolbar=yes,location=yes,scrollbars=yes,width=300,height=200')
}

</SCRIPT>

<BODY>

NOTE: by clicking on the first link you are calling the function openWindow() to open a new window

Open a new window

NOTE: by clicking on the second link the newWindow is closed by using the window method close()

Close the window

A Child Window that acts as a Control Panel - a variation

<SCRIPT>

win2 = open('default.htm', 'newWin2', 'resizable=yes,scrollbar=yes');

function updateWin2(newURL) {
 win2.document.location.href = newURL;
}

</SCRIPT>

<BODY>

Table of Contents
Sample Chapter
About the Authors
Buy the book!

The Gallery Source Code

The Opener - The Gallery

<SCRIPT>

function GalleryCP() {
 GalleryControl = open("gallerycp.htm", "GalleryCP", "width=200,height=225");
}

</SCRIPT>

<BODY onLoad="GalleryCP();">

The "Control Panel" – using onClick
<SCRIPT>

var imgChange = "";

function changeImg(NameOfImage) {
 if (document.images) {
 var imgSwap = "images/" + NameOfImage + ".jpg";
 opener.document.myImage.src = imgSwap;
 }
}

</SCRIPT>

Picasso
Rembrandt
Van Gogh

The "Control Panel" – using onMouseOver

<A HREF="javascript:void('')"
 onMouseOver="changeImg('picasso')">Picasso
<A HREF="javascript:void('')"
 onMouseOver="changeImg('rembrandt')">Rembrandt
<A HREF="javascript:void('')"
 onMouseOver="changeImg('vangogh')">Van Gogh

PopUp Windows & Cookies Source Code

<SCRIPT>

function openPopUp(){
 open("thanks.htm", "", "width=400,height=350");
}

function GetCookie(Name) {
 var search = Name + "=";
 var returnvalue = "";

 if (document.cookie.length > 0) {
 var offset = document.cookie.indexOf(search);
 if (offset != -1) { // if cookie exists
 offset += search.length;
 // set index of beginning of value
 var end = document.cookie.indexOf(";", offset);
 // set index of end of cookie value
 if (end == -1) end = document.cookie.length;
 returnvalue = unescape(document.cookie.substring(offset, end));
 }
 }
 return returnvalue;
}

function loadPopUp(){
 if (GetCookie('popped') == ""'){
 openPopUp();
 document.cookie = "popped=yes";
 }
}

</SCRIPT>

<BODY onUnLoad="loadPopUp()">

Customizable second Window
<SCRIPT>

function customize(form) {
 var address = form.url.value;

 // determine which options are checked
 var optTool = (form.tool.checked== true) ? 1 : 0;
 var optLoc = (form.loc_box.checked == true) ? 1 : 0;
 var optDir = (form.dir.checked == true) ? 1 : 0;
 var optStatus = (form.stat.checked == true) ? 1 : 0;
 var optMenu = (form.menu.checked == true) ? 1 : 0;
 var optScroll = (form.scroll.checked == true) ? 1 : 0;
 var optResize = (form.resize.checked == true) ? 1 : 0;
 var optWidth = form.width.value;
 var optHeight = form.height.value;

 // create the features string
 var features = "toolbar=" + optTool + ",location=" + optLoc + ",directories="
 + optDir + ",status=" + optStatus
 + ",menubar=" + optMenu + ",scrollbars="
 + optScroll + ",resizeable=" + optResize
 + ",width="
 + optWidth + ",height=" + optHeight;

 var newWin = open(address, "target_name", features);
}

function clear(form){
 form.width.value = "";
 form.height.value = "";
}

</SCRIPT>

<FORM NAME="optForm">
 <INPUT TYPE="text" NAME="url" VALUE="http://">: URL
 <INPUT TYPE="checkbox" NAME="tool">: Toolbar
 <INPUT TYPE="checkbox" NAME="loc_box">: Location
 <INPUT TYPE="checkbox" NAME="dir">: Directories
 <INPUT TYPE="checkbox" NAME="stat">: Status
 <INPUT TYPE="checkbox" NAME="menu">: Menubar
 <INPUT TYPE="checkbox" NAME="scroll">: Scrollbars
 <INPUT TYPE="checkbox" NAME="resize">: Resizable
 <INPUT TYPE="text" NAME="width" VALUE="500"> : Width
 <INPUT TYPE="text" NAME="height" VALUE="200"> : Height
 <INPUT TYPE="button" VALUE="ENTER" onClick="customize(this.form)">
 <INPUT TYPE="reset" VALUE="RESET" onClick="clear(this.form)">
</FORM>

Summary & Examples of Pop-Up Windows

Window open syntax
open('testpage.htm', 'myExample2');

Note all the name-value pairs must be separated by commas, but must not have spaces between them. For example, the following is incorrect:
open('testpage.htm', 'myExample2', 'location=yes, menubar=yes');

Whereas the following, which does not have spaces, is correct:

open('testpage.htm', 'myExample3', 'location=yes,menubar=yes');

The values for the Boolean parameters may be 0 or 1 or yes or no. If a particular Boolean parameter is not specified then its value defaults to no. For example, to open a window without directory buttons, location field, menubar, scrollbars, status or toolbar and not resizable use:

open('testpage.htm', 'myExample4', 'width=600,height=500');

Again, if you don't specify the width and height then the page mimics the current window.

However, to create a window with all the window features you need to explicitly include them:

open('testpage.htm', 'myExample5',
 'width=600,height=500,directories=yes,
 location=yes,menubar=yes,scrollbars=yes,
 status=yes,toolbar=yes,resizable=yes');

Stringing it together
So now that we know how to create a window with any features we desire, how can we use JavaScript to control the features we want? The first three parameters are all strings; JavaScript can manipulate strings just as well as any other programming language.

<SCRIPT>

function createWindow(what) {
 var URL = what.URL.value;

 var windowName = what.windowName.value;

 var features =
 'width=' + what.width.value +
 ',height=' + what.height.value +
 ,directories=' + (what.directories.checked - 0) +
 ',location=' + (what.location.checked - 0) +
 ',menubar=' + (what.menubar.checked - 0) +
 ',scrollbars=' + (what.scrollbars.checked - 0) +
 ',status=' + (what.status.checked - 0) +
 ',toolbar=' + (what.toolbar.checked - 0) +
 ',Resizable=' + (what.Resizable.checked - 0);

 window.open (URL, windowName, features);
}

</SCRIPT>

<FORM>
 URL <INPUT TYPE="text" NAME="URL" VALUE="testpage.htm">
 Name <INPUT TYPE="text" NAME="windowName" VALUE="myWindow">
 Width <INPUT TYPE="text" NAME="width" VALUE="200">
 Height <INPUT TYPE="text" NAME="height" VALUE="200">
 <INPUT TYPE="checkbox" NAME="directories"> Directories
 <INPUT TYPE="checkbox" NAME="location"> Location
 <INPUT TYPE="checkbox" NAME="menubar"> Menubar
 <INPUT TYPE="checkbox" NAME="scrollbars"> Scrollbars
 <INPUT TYPE="checkbox" NAME="status"> Status
 <INPUT TYPE="checkbox" NAME="toolbar"> Toolbar
 <INPUT TYPE="checkbox" NAME="resizable"> Resizable
 <INPUT TYPE="button" VALUE="Create It"
 onClick="createWindow(this.form)">
</FORM>

Maintaining their focus and keeping them centered
You may have noticed that its quite easy to lose pop-up windows - they can become hidden behind the main browser window. This happens when the main browser window regains focus, i.e., becomes the selected window. To avoid this you need to decide whether you want the pop-up window to have exclusive control of the browser, or whether you want it to be closed, or even brought to the front after a short delay.

By placing the following in the document loaded into the pop-up window then the pop-up will remain in front of the main browser window:

<BODY onBlur="window.focus();">

This has the side effect on some browsers of inhibiting the use of the main browser window until the pop-up window is closed. If you don't require this feature then you could always refocus the pop-up window after a delay:

<BODY onBlur="setTimeout=('window.focus()', 1000);">

Which ensures that the pop-up window regains the focus after a delay of one second - enough time to allow the user to interact with the main browser window.

Of course you may decide that if the user has moved the focus to the main browser window, that the pop-up window should be closed:

<BODY onBlur="window.close();">

Keeping windows centered
In Netscape 4.x, the screenX and screenY attributes were introduced. In IE 4.x the top and left attributes were introduced. By combining the two both Netscape 4.x and IE 4.x will allow you to position the window. In earlier browsers the attributes and their values will be safely ignored:

open('testpage.htm', 'myExample6',
 'width=600,height=500,screenX=400,screenY=400,top=100,left=100');

To actually center the pop-up window requires the use of the window objects outerWidth and outerHeight properties in Netscape 4.x and the screen objects width and height properties in IE 4.x. However, this results in the pop-up window being centered within the confines of the main browser window in Netscape 4.x, and centered within the confines of the screen in IE 4.x - not the same thing, unless the main browser window is maximized.

<SCRIPT>

function centerWindow() {
 if (document.all) {
 var xMax = screen.width;
 var yMax = screen.height;
 }
 else if (document.layers) {
 var xMax = window.outerWidth;
 var yMax = window.outerHeight;
 }
 else {
 var xMax = 600;
 var yMax = 500;
 }

 var xOffset = (xMax / 2) - (580 / 2);
 var yOffset = (yMax / 2) - (580 / 2);

 open('testpage.htm', 'myExample7',
 'width=600,height=500' +
 ',screenX=' + xOffset + ',screenY=' + yOffset +
 ',top=' + yOffset + ',left=' + xOffset);
}

</SCRIPT>

Controlling Pop-up Windows
The windowHandle allows you to control the contents of the pop-up window; either to change the location of the pop-up window, to write HTML code into the window, or to interrogate the window properties.

Changing Location
The following shows how to alter the location of the pop-up window from blank.htm to testpage.htm:

<SCRIPT>

myWindow8 = open('blank.htm', 'myExample8', 'width=600,height=500');
myWindow8.location.href = 'testpage.htm';

</SCRIPT>

There are potential problems with the code above. There are occasions where the window may not actually be opened before the change of location is attempted. It is best to change the above code to introduce a slight delay to give the browser a chance to actually open the window first. The following introduces a one second delay before the location is changed:

<SCRIPT>

myWindow8 = open('blank.htm', 'myExample8', 'width=600,height=500');
setTimeout("myWindow8.location.href = 'testpage.htm'", 1000);

</SCRIPT>

Writing things down
The following demonstrates how to write directly to the pop-up window using the windowHandle in conjunction with the documents write method. The first occasion that the window is written to will cause the existing contents to be replaced, other following document writes append information to the window.

<SCRIPT>

myWindow9 = open('testpage.htm', 'myExample9', width=600,height=500');

function update() {
 for (var i = 0; i < 10; i++) {
 msgWindow9.document.write('Message number ' + i + '
');
 }
}

setTimeout('update()', 1000);

</SCRIPT>

Interrogation
With frames in a frameset its fairly straight forward to access the parent frame or the child frame, all you need to do is remember the object hierarchy. For example, the following frameset:

<FRAMESET COLS="50%,50%">
 <FRAME SRC="one.htm" NAME="left">
 <FRAME SRC="two.htm" NAME="right">
</FRAMESET>

Produces the following structure:

 Parent Frame

 |

 +----+----+

 | |

 one.htm two.htm

To access the parent frame from one.htm, use simply use: alert(parent.location.href), which will highlight the location of the parent frame, and similarly, to perform the reverse alert(window.one.location.href) will highlight the location of the left frame from the parent frame, and alert(parent.two.location.href) will highlight the location of the right frame from the left frame.

Once you've established this simple object syntax, you can use it to read and write almost any property of any other window within the frameset.

However, when you've opened a new window, the window does not form part of a frameset - therefore a new means of accessing the new window from the opener (i.e., the window that opens the new window) is required and vice versa.

Well, accessing the new window is straight forward enough, you just use the window name as shown in the previous example. Modern browsers also include a means of accessing the opener window. Funny enough, by providing an opener property, ie, window.opener, which will reference the window, if any, that opened the current window. For example alert(window.opener.location.href) will highlight the location of the current window's opener.

<SCRIPT>

myWindow10 = open('blank.htm', 'myExample10', 'width=600,height=500');

if (newWindow10.opener == null) newWindow10.opener = self;

</SCRIPT>

Which checks to see whether the new window already has an opener property, and if not, creates one with a reference to the current window. This new window property can be used as if the browser supplied the opener property itself.

Calendar pop-up window
To round this off, I've included a practical example of using pop-up windows. The Form button, when pressed, opens up a Calendar with appropriate Month and Year.

<SCRIPT>

function getCal(form){
 var month = form.Month.value;
 var year = form.Year.value;

 open('calendar.htm?Month=' + month + '&' + 'Year=' + year, 'myExample11',
 'width=800,height=550');
}

</SCRIPT>

<FORM>
 Month
 <SELECT NAME="Month" SIZE="1">
 <OPTION VALUE="1">Jan</OPTION>
 ect...
 <OPTION VALUE="12">Dec</OPTION>
 </SELECT>
 Year
 <SELECT NAME="Year" SIZE="1">
 <OPTION VALUE="2000">00</OPTION>
 ect...
 <OPTION VALUE="2005">05</OPTION>
 </SELECT>
 <INPUT TYPE="button" VALUE="Show Calendar" onClick="getCal(this.form)">
</FORM>

Hopefully, this showed you how to create new windows with properties and attributes that you can specify yourself. You've also seen how to write to these windows and how to access one window from another.

JavaScript & "buttons"

Alert
<FORM>
 <INPUT TYPE="Button" VALUE="Alert"
 onClick="alert('this is the message')">
</FORM>

Link Button
To create a Button on your page simply insert this code in to the body of your document and change the "link location" and "Button description"

<FORM>
 <INPUT TYPE="Button" VALUE="DESCRIPTION"
 onClick="location.href='LINK'">
</FORM>

Back and Forward Buttons
<FORM>
 <INPUT TYPE="Button" VALUE=" << "
 onClick="history.go(-1)">
 <INPUT TYPE="Button" VALUE=" >> "
 onClick="history.go(1)">
</FORM>

Back And Forward Image Button
[image: image8.png]

Here you can make use of the back and forward functions with pictures. All you need to do is copy this 2 lines. Just change the uppercase text.

<A HREF=""
 onClick="parent.history.back();"
 onMouseOver="self.status='Back'; return true;"
 onMouseOut="self.status='';">

<A HREF=""
 onClick="parent.history.forward();"
 onMouseOver="self.status='Forward'; return true;"
 onMouseOut="self.status='';">

Back And Forward Buttons - Frames
Here's any easy way to use the back and forward buttons in frames. These buttons have to go into another frame other than the main frame, they won't work without frames! A working example is down in the lower left hand corner. Just copy this code and change FRAME TARGET NAME to the name of the frame that you want to go back and forward.

<FORM>
 <INPUT TYPE="button" VALUE="BACK"
 onClick="parent.FRAME TARGET NAME.history.back()">
 <INPUT TYPE="button" VALUE="FORWARD"
 onClick="parent.FRAME TARGET NAME.history.forward()">
</FORM>

View Source Button
Fill in the ALL "CAPS WORDS" in quotes that work on your page Frame name Generally Main.

<FORM>
 <INPUT TYPE="Button" VALUE="View Source"
 onClick= 'location = "view-source:" + location'>
</FORM>

View Source Button - Frames
 (This will view the menu on the left side.)

Here's the code, all you need to do is to change the FRAME TARGET NAME.

<FORM>
 <INPUT TYPE="BUTTON" VALUE="View Source"
 onClick= 'parent.FRAME TARGET NAME.location =
 "view-source:" + parent.FRAME TARGET NAME.location'>
</FORM>
Reload Button
<FORM>
 <INPUT TYPE="BUTTON" VALUE="Reload"
 onClick="location.reload()">
</FORM>

Reload Button- Frames

(This will only reload the counter in the bottom left.)

Just copy this line and change the FRAME TARGET NAME.

<FORM>
 <INPUT TYPE="BUTTON" VALUE="Reload"
 onClick='parent.counter.location="javascript:location.reload();"'>
</FORM>
New Window
This button opens a new window where you can control its properties (scrollbars, size, status...). To do that, answer yes or no, or change the numbers. You can also make the window open to a link or a file.

<FORM>
 <INPUT TYPE="BUTTON" VALUE="Open Window"
 onClick="open('YOUR LINK GOES HERE', 'Sample',
 'location=yes,scrollbars=yes,width=635,height=660');">
</FORM>

37

_1043153708.unknown

_1043153707.unknown

