Quiz Source Code

<SCRIPT SRC="quiz.js"></SCRIPT>

<SCRIPT>

function score(form) {
 var correct = 0, incorrec = "";

 for (i = 1; i < Questions + 1; i++) {
 var count = 0, numChecked = 0;

 for (j = 0; j < eval("form.Q" + i).length; j++) {
 var field = eval("form.Q" + i)[j];

 if (field.checked) {
 numChecked++;

 for (k = 0; k < eval("a" + i).length; k++) {
 if (field.value == eval("a" + i)[k]) count++;
 }
 }
 }

 if (numChecked != count) count = -1;
 if (count == eval("a" + i).length) correct++;
 else incorrec += "Q" + i + " ";
 }
 form.correct.value = correct;
 form.incorrec.value = incorrec;
}

function showAnswers(form) {
 for (i = 1; i < Questions + 1; i++) {
 for (j = 0; j < eval("form.Q" + i).length; j++) {
 var field = eval("form.Q" + i)[j];

 field.checked = false;

 for (k = 0; k < eval("a" + i).length; k++) {
 if (field.value == eval("a" + i)[k]) field.checked = true;
 }
 }
 }
 form.correct.value = "";
 form.incorrec.value = "";
}

</SCRIPT>

<FORM NAME="quiz">

 if minutes = 9 & timeSt = ((minutes < 10) ? ":0" : ":") + minutes;
 Then timeSt equals
 <INPUT TYPE="radio" NAME="Q1" VALUE="a"> A. :0

 <INPUT TYPE="radio" NAME="Q1" VALUE="b"> B. :09

 <INPUT TYPE="radio" NAME="Q1" VALUE="c"> C. :9

 <INPUT TYPE="radio" NAME="Q1" VALUE="d"> D. 9</P>

 The prompt() method requires two pieces of information. The first is text to be

displayed, and the second is the default data in the entry field.
 <INPUT TYPE="radio" NAME="Q2" VALUE="a"> A. true

 <INPUT TYPE="radio" NAME="Q2" VALUE="b"> B. false </P>

etc...

 Which of the following are legal variable names?
 <INPUT TYPE="checkbox" NAME="Q10" VALUE="a">A. _dummy

 <INPUT TYPE="checkbox" NAME="Q10" VALUE="b">B. v13

 <INPUT TYPE="checkbox" NAME="Q10" VALUE="c">C. 13v

 <INPUT TYPE="checkbox" NAME="Q10" VALUE="d">D. A9</P>

You have: <INPUT TYPE="text" NAME="correct"> answers correct out of a possible ten.

The question numbers that were not correct are:
 <INPUT TYPE="text" NAME="incorrec" SIZE="50">

 <INPUT TYPE="button" VALUE="Get Score" onClick="score(this.form)">
 <INPUT TYPE="button" VALUE="Show Answers"
 onClick="showAnswers(this.form)">
 <INPUT TYPE="reset" VALUE="Reset">
</FORM>

quiz.js

Questions = 10; // how many questions are there

a1 = new Array("b"); // create individual answer arrays
a2 = new Array("a");
a3 = new Array("a");
a4 = new Array("a", "d", "e");
a5 = new Array("c");
a6 = new Array("a", "c");
a7 = new Array("a");
a8 = new Array("b");
a9 = new Array("a");
a10 = new Array("a", "b", "d");

Quiz Source Code

// the answer arrays are contained in the external ans.js file
<SCRIPT SRC="quiz.js"></SCRIPT>

<SCRIPT>

// "scores" the quiz
function score(form) {
 var correct = 0; // number of correct answers
 var incorrec = ""; // what questions are incorrect or not answered

 // Questions - how questions are there, this comes from the ans.js file
 for (i = 1; i < Questions + 1; i++) {
 //counter used to determine if a particular question was answered correctly
 var count = 0;
 var numChecked = 0; //counter used to verify that only a valid element is checked

 // we need to determine the number of "fields" for each question,
 // since this number is a variable
 // (some have 2 "fields" such as true & false & others have 4 or 5 "fields")
 // eval converts a string variable into a Form "Question" Object
 // the Form "Question" Object is an array &
 // we need to evaluate each individual element in the array
 for (j = 0; j < eval("form.Q" + i).length; j++) {
 var field = eval("form.Q" + i)[j]; // shortcut to a particular Form "Question"
 if (field.checked) {
 numChecked++; //counter for the number elements checked
 // eval converts a variable string into an Answer Array Object
 // that corresponds to that particular question
 // we need to loop through the respective Answer Array
 // in order to check if the answers match with those "fields" that are checked
 // eval("a" + i) is the answer array for that particular question
 // and length corresponds to number of correct answers for
 // that particular question
 for (k = 0; k < eval("a" + i).length; k++) {
 // we need to check for two conditions:
 // 1. is the field checked &
 // 2. if it is checked does the value match one of the answers
 // in it's corresponding Answer Array
 // eval converts a variable string into an Answer Array Object
 if (field.value == eval("a" + i)[k]) count++;
 }
 }
 // if these numbers do not match
 // then an element was checked that shouldn't have been checked
 // set the count to -1 in order to have answer marked as incorrect
 if (numChecked != count) count = -1;
 // if the count equals the number of elements in the respective Answer Array then
 // the User answered the entire question correctly
 if (count == eval("a" + i).length) correct++;
 // else the User answered the question incorrectly or left the question "blank"
 else incorrec += "Q" + i + " ";
 }

 form.correct.value = correct; // display the number of correct answers
 form.incorrec.value = incorrec; // display which answers were incorrect or left "blank"
}

// display all the correct answers for the Quiz
function showAnswers(form) {
 // Questions - how questions are there, this comes from the ans.js file
 for (i = 1; i < Questions + 1; i++) {
 var field = eval("form.Q" + i)[j]; // shortcut to a particular Form "Question"
 field.checked = false; // uncheck all the elements - start out with a clean slate
 // we need to determine the number of "fields" for each question,
 // since this number is a variable
 // (some have 2 "fields" such as true & false & others have 4 or 5 "fields")
 // eval converts a string variable into a Form "Question" Object
 // the Form "Question" Object is an array &
 // we need to evaluate each individual element in the array
 for (j = 0; j < eval("form.Q" + i).length; j++) {
 // eval converts a variable string into an Answer Array Object
 // that corresponds to that particular question
 // we need to loop through the respective Answer Array
 // in order to check if the answers match with those "fields" that are checked
 for (k = 0; k < eval("a" + i).length; k++) {
 // if the "field" value matches to one of those in the Answer Array
 // then check that respective "field"
 if (field.value == eval("a" + i)[k]) field.checked = true;
 }
 }
 }

 form.correct.value = ""; // empty the correct text field
 form.incorrec.value = ""; // empty the incorrect text field
}

</SCRIPT>

CONVENTIONS:
· Question is 1 is named Q1 & Question 2 is named Q2, etc...

· Qx are arrays, they use checkboxes or radio buttons

· The values for the fields are a, b, c, d, e depending on the number fields

<FORM NAME="quiz">

 if minutes = 9 & timeSt = ((minutes < 10) ? ":0" : ":") + minutes;
 Then timeSt equals
 <INPUT TYPE="radio" NAME="Q1" VALUE="a"> A. :0

 <INPUT TYPE="radio" NAME="Q1" VALUE="b"> B. :09

 <INPUT TYPE="radio" NAME="Q1" VALUE="c"> C. :9

 <INPUT TYPE="radio" NAME="Q1" VALUE="d"> D. 9</P>

 The prompt() method requires two pieces of information. The first is text to be
 displayed, and the second is the default data in the entry field.
 <INPUT TYPE="radio" NAME="Q2" VALUE="a"> A. true

 <INPUT TYPE="radio" NAME="Q2" VALUE="b"> B. false </P>

etc...

 Which of the following are legal variable names?
 <INPUT TYPE="checkbox" NAME="Q10" VALUE="a">A. _dummy

 <INPUT TYPE="checkbox" NAME="Q10" VALUE="b">B. v13

 <INPUT TYPE="checkbox" NAME="Q10" VALUE="c">C. 13v

 <INPUT TYPE="checkbox" NAME="Q10" VALUE="d">D. A9</P>

You have: <INPUT TYPE="text" NAME="correct"> answers correct out of a possible ten.

The question numbers that were not correct are:
 <INPUT TYPE="text" NAME="incorrec" SIZE="50">

THE BUTTONS:

· Get Score - calls the score function which "grades" the quiz. NOTE: it passes the "Entire Form" to function.

· Show Answers - calls the showAnswers() which displays the correct answer(s) for each question. NOTE: it passes the "Entire Form" to function.

 <INPUT TYPE="button" VALUE="Get Score" onClick="score(this.form)">
 <INPUT TYPE="button" VALUE="Show Answers"
 onClick="showAnswers(this.form)">
 <INPUT TYPE="reset" VALUE="Reset">
</FORM>

Quiz Source Code
Using a MultiDimensional Array

<SCRIPT SRC="answers.js"></SCRIPT>

<SCRIPT>

function score(form) {
 var correct = 0;
 var incorrec = "";

 for (i = 1; i < answers.length + 1; i++) {
 var count = 0;
 var numChecked = 0;

 for (j = 0; j < eval("form.Q" + i).length; j++) {
 var field = eval("form.Q" + i)[j];

 if (field.checked) {
 numChecked++;

 for (k = 0; k < answers[i - 1].length; k++) {
 if (field.value == answers[i - 1][k]) count++;
 }
 }

 if (numChecked != count) count = -1;

 if (count == eval("a" + i).length) correct++;
 else incorrec += "Q" + i + " ";
 }

 form.correct.value = correct;
 form.incorrec.value = incorrec;
}

function showAnswers(form) {
 for (i = 1; i < answers.length + 1; i++) {
 for (j = 0; j < eval('form.Q' + i).length; j++) {
 var field = eval("form.Q" + i)[j];

 field.checked = false;

 for (k = 0; k < answers[i - 1].length; k++) {
 if (field.value == answers[i - 1][k]) field.checked = true
 }
 }
 }

 form.correct.value = "";
 form.incorrec.value = "";
}

</SCRIPT>

Quiz Source Code
Using a MultiDimensional Array

<SCRIPT SRC="answers.js"></SCRIPT>

<SCRIPT>

function score(form) {
 var correct = 0;
 var incorrec = "";

 // answers.length is the number of answers
 for (i = 1; i < answers.length + 1; i++) {
 var count = 0;
 var numChecked = 0;

 for (j = 0; j < eval("form.Q" + i).length; j++) {
 var field = eval("form.Q" + i)[j];

 if (field.checked) {
 numChecked++;
 // Since the answers array is an array of arrays,
 // the individual arrays, in answers, themselves have certain lengths
 // that correspond to the number of answers for that particular question
 for (k = 0; k < answers[i - 1].length; k++) {
 // answers is an array of arrays
 // answers[4 - 1] => a4 => ("a", "d", "e")
 // answers[4 - 1][1] = > a4[1] => "d"
 if (field.value == answers[i - 1][k]) count++;
 }
 }

 if (numChecked != count) count = -1;
 if (count == eval("a" + i).length) correct++;
 else incorrec += "Q" + i + " ";
 }

 form.correct.value = correct;
 form.incorrec.value = incorrec;
}

function showAnswers(form) {
 for (i = 1; i < answers.length + 1; i++) {
 for (j = 0; j < eval('form.Q' + i).length; j++) {
 var field = eval("form.Q" + i)[j];

 field.checked = false;

 for (k = 0; k < answers[i - 1].length; k++) {
 // answers is an array of arrays
 // answers[4 - 1] => a4 => ("a", "d", "e")
 // answers[4 - 1][1] = > a4[1] => "d"
 if (field.value == answers[i - 1][k]) field.checked = true
 }
 }
 }

 form.correct.value = "";
 form.incorrec.value = "";
}

</SCRIPT>

answers.js

// how many questions are there
Questions = 10

// create individual answer arrays
a1 = new Array("b");
a2 = new Array("a");
a3 = new Array("a");
a4 = new Array("a", "d", "e");
a5 = new Array("c");
a6 = new Array("a", "c");
a7 = new Array("a");
a8 = new Array("b");
a9 = new Array("a");
a10 = new Array("a", "b", "d");

// create the answer array that holds all the answers
answers = new Array();

// fill up the answer array with the "answers"
// this will create a 2-dimensional array, an array of arrays
for (i = 1; i < Questions + 1; i++) {
 answers[i - 1] = eval("a" + i);
}

Serve-Side Includes (SSI)
Introduction
Server-Side Includes (SSIs) are a very useful way to make your site easier to manage, and for providing extra information. SSI are directives you can place into an HTML document to execute other programs or to output data, such as file statistics or the contents of environment variables. SSI directives can save you the trouble of writing complete CGI programs to output documents containing a small amount of dynamic information.

To summarize, instead of writing code to perform dynamic and useful tasks, you can use commands called Server-Side Includes (SSIs). Server-Side Includes are little comments in an HTML document. The server parses the specified document looking for SSI directives before passing the document to a browser. The browser only sees the end result and never sees the SSI call.

While Server Side Includes technically are not CGI, they can become an important tool for incorporating CGI-like information as well as output from CGI programs.

SSIs probably were started to handle the desire to include a common file inside a bunch of different files. Someone said, "I want to include another file in my HTML and I don't want to have to cut and paste every time I need to include it in my file." The most common use for SSIs is providing a signature file or company logo or copyright notices that you want to add to every file you create. The include file resides on the server is included whenever any HTML file that contains the include command is requested, which is were the term Server-Side Include comes from.

There are five basic types of SSIs we can use. We can:

· Include text files in our pages, as they are loaded

· Retrieve the size and last modification date of a file

· Define how variables and messages are displayed

· Insert the values of the HTTP variables in the page sent back to the browser

· Execute other programs or scripts, such as CGI and ISAPI applications

Overall the include command can make your task as a Web page builder much easier. Used properly, the include command can dramatically decrease the amount of HTML that you have to write and modify.

Using SSIs Negatives
As with every other neat and cool thing you can do, SSIs are somewhat of a two-edged sword. The server has to do a lot more work to process these includes. When the server returns an HTML file, it generates the appropriate response headers and sends the HTML file back to the client. No fuss and very little work.

When the server executes the CGI program, a compiler or interpreter executes your program. Your CGI program should generate some HTTP response headers, and then the HTML file server's job is to generate any additional required HTTP response headers and pass the CGI-generated HTML back to client/browser.

When the server returns a file with SSI commands in it, however, it must read each line of the file looking for the special SSI command syntax. This is called parsing a file. SSI commands can appear anywhere in your HTML file. This means that your server must make a special effort to find the commands in your HTML file.

This parsing of files puts an extra burden on your server. That also means that the SSI files are slower when returned to your Web client than regular HTML files. The more SSI files your server has to handle, the more processing load on your server, and, as consequence, the slower your server operates. Do not let this stop you form using SSIs; just be aware of the cost and benefits of using SSI files.

Your local Internet provider wants to give you all the freedom it can on your server. Because of the extra burden placed on the server, however, limitations are placed on the types of files that can have SSI commands. This limitation is based on the ending characters of each filename, called filename extension. Usually, it's something like .shtml. So any file that ends in .shtml is handled as an SSI file by the server. On the NT server the extension is .stm.
In order for SSIs to work, the server has to read every line of SSI file looking for the special SSI commands. A significant extra computing and disk-access burden is placed on any server that has to parse its files before sending them back to the client.

And additionally, enabling SSI creates a security risk. For example, an unwise user might embed directives to execute system commands that output confidential information.

So, SSI can be very handy, but it must be used efficiently and cautiously.

Setting up your server for SSI
If SSI is not currently turned on your UNIX server, then you need to add to your server configuration file (srm.conf). Add the following line to that file:

addType text/x-server-parsed-html .shtml

That will force the server to look for SSI calls in all .shtml files. You could add another line ending in ".html" and it will also parse all .html files. But remember that unless most .html files have SSI calls, it will be less efficient because every single .html file will be parsed before it is sent off to the browser. So it is recommended you just have your server parse .shtml files.

For Windows NT you need to edit the Registry => HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W3SVC\Parameters =>
- ServerSideIncludesEnabled - 1
- ServerSideIncludesExtension - .stm

Using the virtual Command Argument
Including Text Files in a Page with #include is one of the most useful techniques with SSI is to insert pre-built blocks of text into a page.

<!--#include virtual="/include_files/signature.htm"--> 'virtual path
<!--#include virtual="/full pathname/signature.htm"-->

the server begins its search for the file from the document root directory (/).

Using the file Command Argument
the file command argument should be used when including files that are in the same directory of the SSI file is in (the current directory) or a subdirectory of the current directory.

When using the file command, you cannot include a pathname that begins above the current directory. In other words, any pathname that begins with ../ is illegal.

<!--#include file="include_files/signature.htm"--> 'physical path
<!--#include file="C:\TextFiles\signature.htm"-->

Executing Commands Using SSIs
Using this directive, you can execute a CGI script, a shell command, or an executable or dll (ie, NT). After the command, app, and so forth has executed, the output is inserted into the HTML stream.

For Windows NT:

<!--#EXEC [CGI][CMD][ISA] = "Command/App/Scripts/ToExecute"-->
<!--#EXEC CGI = "/cgi-bin/querytme.exe?1week+2days"-->
<!--#EXEC CMD = "/utils/cmdtest.exe?10024"-->

For UNIX

To execute a CGI script:

<!--#exec cgi="/usr/cgi-bin/script.cgi"-->

To execute a command on the server (the browser sees the results of the command):

<!--#exec cgi="command line here"-->

Executing a command is the only way to pass arguments to a CGI script. For instance:

<!--#exec cgi="/usr/cgi-bin/script.cgi?file=document1.count"-->

won't work, but this line will:

<!--#exec cmd="/usr/cgi-bin/script.cgi document1.count"-->

SSI Directives
	COMMAND
	PARAMETER
	DESCRIPTION

	echo
	var
	Inserts value of special SSI variables as well as other environment variables

	include
	
	Inserts text of document into current file

	
	file
	Pathname relative to current directory

	
	virtual
	Virtual path to a document on the server

	fsize
	file
	Inserts the size of a specified file

	flastmod
	file
	Inserts the last modification date and time for a specified file

	exec
	
	Executes external programs and inserts output in current document

	
	cmd
	Any application on the host

	
	cgi
	CGI program

	config
	
	Modifies various aspects of SSI

	
	errmsg
	Default error message

	
	sizefmt
	Format for size of the file

	
	timefmt
	Format for dates

By convention pages that have SSI embeded in them have the extension of .shtml in UNIX & .stm in Windows, otherwise the server does not know which pages to parse for SSIs.

USING ENVIRONMENT VARIABLES
My server is: <!--#echo var="SERVER_NAME"-->
You are from: <!--#echo var="REMOTE_HOST"-->
Last updated: <!--#echo var="DATE_LOCAL"-->

SSI and HTTP/CGI Variables

Remote Address: 198.62.2.169
Script Name: /jscript/week7/echohttp.stm
Server Software: Microsoft-IIS/4.0
Last Modified: Monday February 28 2000

File 'WhatDay.asp' - Size: 2,339 bytes
Last Modified: Wednesday October 21 1998

SSI and HTTP/CGI Variables

<HTML>
<HEAD><TITLE>SSI and HTTP/CGI Variables</TITLE></HEAD>

<BODY>

<H1>SSI and HTTP/CGI Variables</H1>

Remote Address: <!-- #echo var="REMOTE_ADDR" -->

Script Name: <!-- #echo var="SCRIPT_NAME" -->

Server Software: <!-- #echo var="SERVER_SOFTWARE" -->

Last Modified: <!-- #echo var="LAST_MODIFIED" --> <P>

Last Modified: <!-- #flastmod virtual="WhatDay.asp" -->

<!-- #config sizefmt="bytes" -->
File 'WhatDay.asp' - Size: <!-- #fsize virtual="WhatDay.asp" --> bytes

</BODY>
</HTML>

SSI using #exec CMD

ping infoseek.com:

<PRE>

<!-- #exec CMD="ping infoseek.com" -->

</PRE>

ping infoseek.com:

Web-Embedded Programming

Before Web-Embedded Programming

A few years ago, Web programming started out with the Common Gateway Interface, or CGI. Here's a quick review of the basics concepts of CGI.

1. When a user makes a CGI request of a Web server, something in the URL will tip off the server to process it as a CGI request. The hint in the URL could look like one of the following examples.

· The URL requested by the user is in a /cgi-bin/ directory: http://www.someWhere.com/cgi-bin/randomCGIprogram

· The Web server might be configured to automatically recognize certain file extensions as being CGI executables: http://www.erehwon.org/goSearch.py .py commonly denotes Python programs, another popular language for Web programming.

· The file extension might be a "generic" CGI extension: http://www.xyz.net/doSomething.cgi

2. In these cases, the Web server "hands off" to a program specified by the URL, spawning it as a child process and providing it with the information it needs to be a "Web program": generally environment variables (ie, QUERY_STRING) and Standard Input (STDIN).

3. The program will run and produce information, which it sends to Standard Output (STDOUT). Usually, the program will then create a minimal amount of HTTP header information, at the very least, as part of its Output.

4. The Web server will "capture" the STDOUT stream and redirect it to the user via the Web. The user's browser will interpret the information according to the HTTP header. This will usually be HTML text, but CGI programs can just as easily create byte streams to be reconstructed as JPEG images or RealAudio feeds.

A simple C program:

 #include <stdio.h>

 int main () {
 print("Hello, world!\n");
 }

which we can turn into a simple CGI program by simply adding an HTTP header:

 #include <stdio.h>

 int main () {
 print("Content-type: text/plain\n\n");
 print("Hello, world!\n");
 }

Now all that's left to do is compile this code and put the resulting binary in my Web directory structure and then set permissions appropriately.

NOTE: print("Content-type: text/plain\n\n"); should look like the Perl examples we looked at during Week 6 which also used print("Content-type: text/html\n\n");

CGI is still used quite a bit in the Web world, but serious complaints have been made about it.

· Spawning a child process is hard work and costs time and memory. This problem with speed has prompted many a complaint from producers of high-traffic Web sites.

· Web servers contain a lot more information than just environment variables and STDIN. It would be handy sometimes for Web programs to gain access to these extra tidbits.

· The whole classical programming paradigm has proven cumbersome for most Web-programming needs. What you're really trying to do is write a program that will intelligently compose HTML on your behalf. So, why does it look like computer code? Why can't it look more like HTML?

Web-Embedded Programming

More modern ways of programming Web applications have arisen over the past few years. Their roots lie in Server-parsed HTML - Server Side Includes (SSIs) (.shtml - UNIX or .stm - NT), a programming option that's been on the scene since almost the beginning, but was never powerful enough for serious application programming.

The new languages and techniques revolve around embedding programming code into HTML files. Some popular examples are:

· Active Server Pages (.asp files) are used by the Microsoft IIS Webserver. ASP files can be activated with several different scripting engines, including VBScript, JavaScript, and PerlScript.
 NOTE: ASP has been ported to UNIX and Linux using two different development tracks:

· Commercial (ChiliSoft) - expensive

· Perl Module - free

· Allaire Cold Fusion (.cfm files) provide a very handy commercial Web-development environment. Though it started off only being available on the Windows NT side of the house, lately it's cropped up on the UNIX and Linux as well.
· PHP (.php or .php3 files) like Active Server Pages except on steroids. PHP incorporates features from Shell programming, C programming, Perl, and Java. Works on NT, UNIX, and Linux platforms.
· Meta-HTML is a "free software" product available for UNIX and Linux systems. It supports ODBC, as well as a native interface to mySQL, and provides software plug-ins to Netscape and Apache Web servers.

Display results using ASP v1

<% @ Language="JavaScript" %>

<HTML>
<HEAD><TITLE>Results from the Form</TITLE></HEAD>

<BODY>

<CENTER>

<H1>Results from the Form</H1>

Your name is <% = Request("name") %> and your email is <% = Request("email") %>

</CENTER>

</BODY>
</HTML>

Display results using ASP v2

<% @ Language="JavaScript" %>

<HTML>
<HEAD><TITLE>Results from the Form</TITLE></HEAD>

<BODY>

<CENTER>

<H1>Results from the Form</H1>

Your name is <% Response.write(Request("name")) %> and your email is <% Response.write(Request("email")) %>

</CENTER>

</BODY>
</HTML>

Cold Fusion Mark-up Language Example

<!--customer.cfm-->
<!--This template performs the following 3 functions:-->
<!--*Searches the customer table based on lastname-->
<!--*Uses a sentinel (customerid 1) to create a New customer-->
<!--*Edits a pre-existing customer-->

<CFQUERY NAME="getcust" DATASOURCE="a2zdata">
SELECT *
FROM customers
<CFIF #custactions# contains "Lookup">
WHERE lastname LIKE '%#custname#%' and customerid > 1
</CFIF>
<CFIF #custactions# contains "New">
WHERE customerid=1
</CFIF>
<CFIF #custactions# contains "Edit">
WHERE customerid=#customerid#
</CFIF>
ORDER BY lastname,firstname
</CFQUERY>
<CFINCLUDE TEMPLATE="../common/header.cfm">
<CFIF #custactions# contains "lookup">
<!--Output results based on LIKE query and ask user to select -->
<!--customer-->
<CENTER>
<CFOUTPUT>
<H3>Your query returned #getcust.recordcount# results</H3>
</CFOUTPUT>
<TABLE>
<TH></TH><TH>Last Name</TH><TH>First Name</TH><TH>Address 1</TH>
<CFOUTPUT QUERY="getcust">
<TR>
<TD>

</TD>
<TD>#lastname#</TD>
<TD>#firstname#</TD>
<TD>#address1#</TD>
</TR>
</CFOUTPUT>
</TABLE>
<CFELSE>

<!--Either edit a preexisting customer or create a new one-->
<!--Customer data entry fields are contained in customerfields.cfm-->
<CENTER>
<CFIF #custactions# contains "New">
<H2>Create New Customer Record</H2>
<CFELSE>
<H2>Edit Customer Record</H2>
</CFIF>
<FORM ACTION="customersave.cfm" METHOD="POST">
<CFINCLUDE TEMPLATE="customerfields.cfm">
<INPUT TYPE="SUBMIT" VALUE="Save">
</FORM>
</CENTER>
</CFIF>
</BODY>
</HTML>

PHP Code Example

<HTML>
<HEAD>
<TITLE>First PHP example</TITLE>

<?
// a comment can be inserted like this
// designate some variables

$bgcolor = "green";
$textcolor = "white";

?>

</HEAD>

<BODY <? Print "bgcolor='$bgcolor' text='$textcolor'"; ?>>

= ;

<H3>A PHP-enabled page!!!</H3>

</BODY>
</HTML>

Cookies

Stateful -vs- Stateless
HTTP is a stateless protocol. This means that an HTTP server has no information in a request to tie it to any other request. The data in a response is based only on the information the client sends in the request. It's like doing a math problem in high school -- you are only allowed to use the facts given in the problem plus mathematical logic to derive an answer.

HTTP stands out from all the other protocols you're probably familiar with using. These protocols are all "stateful" or "stated", which means information divulged in one request can be used to modify future requests. In fact these protocols have a concept of a "session" wherein a batch of requests are sent and responses received. FTP (File Transfer Protocol) has many states, including "the current directory". SMTP (Simple Mail Transfer Protocol) and POP (Post Office Protocol) both include a concept of "who you are" which is used for all requests. NNTP (Network News Transfer Protocol) allows you to "change Usenet groups" to direct where future requests for articles will be retrieved from.

Stateless protocols generally have the advantage that they require fewer resources on the server -- the resources are pushed into the client. But the disadvantage is that the client needs to tell the server enough information on each request to be able to get the proper answer. Cookies are a method for a server to ask the client to store arbitrary data for use in future connections. The server is asking the client to keep state information.

The hardest part of personalizing a Web page is maintaining state -- tracking users as they click through your site. Web browsers and servers have no built-in mechanisms to keep tabs on and remember users as they go from page to page. That is, after a users sends a request to the server and a Web page is returned, the server forgets all about the user and the page she has just downloaded. If a user clicks on a link, the server doesn’t have background information about what page the user is coming from and, more importantly, if the user returns to the page at a later date, there is no information available to the server about the user’s previous actions on the page.

Maintaining state can be important to developing complex interactive applications. Several sites work around this problem using complex server-side CGI scripts. But there is a solution, the new browsers address this problem with cookies: a method of storing information locally in the browser and sending it to the server whenever the appropriate pages are requested by the user. Because cookies allow Web builders to ask a user for personal information, store the data on their computers, and retrieve that knowledge when the user returns, they are the most common way to track visitors.

The cookie mechanism allows servers to personalize pages for each client, or remember selections the client has made when browsing through various pages of a site -- all without having to use a complicated (or more time-consuming) CGI/database system on the server's side.

Cookies work in the following way: When a CGI program identifies a new user, it adds an extra header to its response containing an identifier for that user and other information that the server may glean from the client's input. This header informs the cookie-enabled browser to add this information to the client's cookies file. After this, all requests to that URL from the browser will include the cookie information as an extra header in the request. The CGI program uses this information to return a document tailored to that specific client. The cookies are stored on the client user's hard drive, so the information remains even when the browser is closed and reopened.

JavaScript provides the capability to work with client-side information stored as cookies.

Cookies provide a method to store information at the client side and have the browser provide that information to the server along with a page request. A cookie always includes the address of the server that sent it. That's the primary idea behind a cookie: Identification.

Where did the term cookies come from?
"Lou Montulli, (currently?) the protocols manager in Netscape's client product division, wrote the cookies specification for Navigator 1.0, the first browser to use the technology. Montulli says there's nothing particularly amusing about the origin of the name: 'A cookie is a well-known computer science term that is used when describing an opaque piece of data held by an intermediary. The term fits the usage precisely; it's just not a well-known term outside of computer science circles.'"

The Truth about Cookies

1. Cookies just identify the computer being used, not the individual using the computer.

2. A cookie is not a script. A cookie may be written by a script (either a CGI or JavaScript) but the cookies themselves are simply passive text strings.

3. The Netscape specifications limits a cookie to 4K of text. Most cookies however rarely exceed 20-30 characters (a fraction of a kilobyte). The number of cookies on your machine is limited to 20 per site visited up to a maximum of 300. The oldest cookies are deleted.

4. Cookie security is such that only the originating domain can ever use the contents of your cookie. The trick that companies such as DoubleClick use is to embed a graphic from their domain on a page from another domain. When the graphic (usually a banner) is loaded the DoubleClick domain sets a cookie.

5. The specifications allow for cookies to be set with or without an expiry date. The former are called 'Persistent Cookies' and the latter 'Non-persistent'. A cookie without a valid (future) expiry date will not be stored on your machine but will be available for the duration of the current session (ie. until you log off).

6. Cookie files stored on the client computer are easily read by any word processing program, text editor or web browsing software. If a merchant actually stores sensitive information in a Cookie, that information can be read by any Cookie savvy person with access to the computer storing the Cookie. Most web merchants sophisticated enough to use Cookie based shopping programs will take steps to protect any information transmitted and stored via Cookie technology. For example:

· The merchant could use only Secure Socket Layer (SSL) or other encryption-enabled Web pages to send and receive sensitive Cookie information to protect that information from Web miscreants sniffing that merchant's web correspondence. Any Cookie containing sensitive information could be created using the "secure" attribute so that it can be retrieved only by a computer running SSL enabled software. Additionally, any sensitive information actually stored in the Cookie should be encrypted to hide it from others with access to the web surfer's computer.

· Better yet, the merchant can use a "short form Cookie" that does not store the actual data but instead contains a pointer that the merchant's computer can use to locate the file on the merchant's machine where the information collected is stored.

The bottom line is that an unsuspecting Web consumer, using current Cookie-enabled browsers in their default mode and ignorant of the fact or content of a cookie, must rely on the merchant to "do the right thing".

What Cookies cannot do

1. Cookies CANNOT be used to get a persons e-mail address. They can save the e-mail address after a browser types it into a form, but they can't GET anything. A cookie is just a holder.

2. Cookies do not steal credit card numbers, passwords or any other information. Rather they allow a web site to store information a visitor voluntarily submits to that web site on that visitor's machine. In this regard, Cookies are no different that the traditional databases maintained by retail stores, mail order houses, and other merchants so many of us trust implicitly with the same information the Cookie stores only on the same machine used to supply that information.

3. Cookies cannot be accessed by any computer other than the computer that created the cookie. Yes, if a web surfer goes to Company Y's web page and orders a product, Company Y can store whatever information that surfer is required to provide to complete that sale as a Cookie on the surfer's machine. Equally true is that only Company Y can retrieve that information. Companies A, B, C etc., running on a different computer, cannot access any of the data stored in the Company Y Cookie. Bottom line, storing the information in a Cookie poses no greater risk of Company Y misconduct than providing Company Y access to that same information via mail, telephone, fax or a Cookie-less web page.

4. Web sites that send Cookies cannot, by virtue of creating that Cookie, access any information stored on the system housing the Cookie that does not appear in that Cookie. The Cookie at most allows the web site creating it to retrieve from a visitor's system information that visitor has already submitted to that web site.

Cookies can be used for a multitude of tasks including:

· Reminder calendars that use cookies to store appointments and other messages.

· “Tours” that users can take during several visits to a Website – cookies are used to remember where the user left-off.

· Adventure games that use cookies to keep track of pertinent character data and the current state of the game.

· Storing data as you move from one page (or frame) to another, for example shopping carts.

· Saving user preferences.

· Greeting people by name.

· Notifying visitor on what has changed since their last visit.

· Using CGI you can use a cookie to identify repeat visitors to your site and their movement patterns.

The last point and others like it cause concern for some users. What you should realize is that tracking of visitors existed long before cookies. Using CGI and server-side scripts you can be tracked much more efficiently than by the humble cookie.

cookies.txt

During a browsing session Netscape stores your cookies in memory, but when you quit they go into a file called cookies.txt (ie, C:\Program Files\Netscape\Users\Username), but on a Macintosh the cookie jar is called MagicCookie and resides in the preferences folder. Every time you open your browser, your cookies are read in from disk, and every time you close your browser, your cookies are re-saved to disk. As a cookie expires, it is discarded from memory and it is no longer saved to the hard drive.

www.sislands.com FALSE / FALSE 856869067 headCount 5
.sislands.com TRUE / javascript/week7/html FALSE 959145732 counter 3
www.sislands.com FALSE / FALSE 856869067 userName Frank%20Peter

Each line represents a single piece of stored information. A tab is inserted between each of the fields.

· The domain of "originating" cookie. The domain parameter takes the flexibility of the path parameter one step further. If a site uses multiple servers within a domain the it is important to make the cookie accessible to pages on any of these servers.
 domain=www.sislands.com
Cookies can be assigned to individual machines, or to an entire Internet domain or sub-domain. The only restrictions on this value is that it must contain at least two dots (.sislands.com, not sislands.com) for the normal top-level domains, or three dots for the "extended" domains (.ecom.sislands.com, not ecom.sislands.com)

· flag - A TRUE/FALSE value indicating if all machines within a given domain can access the variable. This value is set automatically by the browser, depending on the value you set for domain.

· If you provide a cookie path attribute, the browser will check it against your script's URL before returning the cookie. For example, if you specify the path "/cgi-bin", then the cookie will be returned to each of the scripts "/cgi-bin/tally.pl", "/cgi-bin/order.pl", and "/cgi-bin/customer_service/complain.pl", but not to the script "/cgi-private/site_admin.pl". The path "/foo" would match "/foobar" and "/foo/bar.html". The path "/" is the most general path. By default, path is set to "/", which causes the cookie to be sent to any CGI script on your site.

· If the second boolean ("secure") attribute is set, the cookie will only be sent to your script if the CGI request is occurring on a secure channel, such as SSL (default is false).

· expiry date is the large number before the cookie-name. It represents the number of milliseconds since Jan 1, 1970 00:00:00 GMT (called the epoch in JavaScript). Hence, there are no Y2K issues with Cookies.

· The end of each line there is the cookie-name and cookie-value - The Cookie.

Setting Cookies

To set a cookie it is only necessary to specify a name-value pair. The domain will be set automatically and the path will be "/". A cookie set without an expiry date will not be written to the cookie file as it cannot persist beyond the current session.

Cookie values, for example, may not include semicolons, commas, or white space. For this reason, you may want to use the JavaScript escape() function to encode the value before storing it in the cookie. If you do this you’ll have to use the corresponding unescape() function when you read the cookie value.

escape() creates and returns a new string that contains an encoded version of the string. The string is encoded as follows: all spaces, punctuation, accented characters, and any other that are not ASCII letters or numbers are converted to the form %xx, where xx is the two hexadecimal digits that represent the ISO-8859-1 (Latin-1) encoding of the character. For example, the ! character has the Latin-1 encoding of 33 which is 21 hexadecimal, so the escape() replaces this character with the sequence %21. Thus the expression:

escape("Hello World!");
yields the string:

Hello%20World%21
The purpose of the escape() encoding is to ensure that the string is portable to all computers and transmittable across all networks, regardless of the character encodings the computer or networks support (as long as they support ASCII).

The encoding performed by escape() is like the URL encoding used to encode query strings and other portions of a URL that might include spaces, punctuation, or characters outside the standard ASCII character set.

The only real difference is that the URL encoding, the spaces are replaced with a ‘+’ character, while the escape() replaces spaces the %20 sequence.

Here is syntax use to set a cookie using JavaScript:

document.cookie="NAME=VALUE; expires=DATE; path=PATH; domain=DOMAIN; secure";
and from the server:

Set-Cookie: NAME=VALUE; expires=DATE; path=PATH; domain=DOMAIN; secure
Optional Attributes for Set-Cookies
	NAME
	DESCRIPTION

	NAME=VALUE
	Both name and value can be any strings that do not contain either a semi-colon, space, or tab. Encoding such as URL encoding may be used if these entities are required in the name or value, as long as your script is prepared to handle it.

	domain=DOMAIN
	This attribute specifies a domain name range for which the cookie will be returned. The domain-name must contain at least two dots (.), e.g., ".microsoft.com" This value would cover both "www.microsoft.com" and "msdn.microsoft.com", and any other server in the microsoft.com domain.

When searching the cookie list for valid cookies, a comparison of the domain attributes of the cookie is made with the Internet domain name of the host from which the URL will be fetched. If there is a tail match, then the cookie will go through path matching to see if it should be sent. "Tail matching" means that domain attribute is matched against the tail of the fully qualified domain name of the host.

Only hosts within the specified domain can set a cookie for a domain and domains must have at least two (2) or three (3) periods in them to prevent domains of the form: ".com", ".edu", and ".us". Any domain that fails within one of the seven special top level domains listed below only require two periods. Any other domain requires at least three. The seven special top level domains are: "COM", "EDU", "NET", "ORG", "GOV", "MIL", and "INT".

The default value of domain is the host name of the server which generated the cookie response.

	expires=DATE
	Specifies the expiry date of a cookie. After this date the cookie will no longer be stored by the client or sent to the server (DATE takes the form Wdy, DD-Mon-YY HH:MM:SS GMT – dates are only stored in GMT). By default, the value of expiry is set to end of the browser session.

	path=PATH
	The path attribute is used to specify the subset of URLs in a domain for which the cookie is valid. If a cookie has already passed domain matching, then the pathname component of the URL is compared with the path attribute, and if there is a match, the cookie is considered valid and is sent along with the URL request. The path "/foo " would match "/foobar" and "/foo/bar.html". The path "/" is the most general path. If the path is not specified, it as assumed to be the same path as the document being described by the header which contains the cookie.

NOTE: And the more specific the path, the higher in the cookie "order" it will be read from the cookie.txt file. However, all the cookies from that domain will also be sent in the HTTP header.

	secure
	If a cookie is marked secure, it will only be transmitted if the communications channel with the host is a secure one. Currently this means that secure cookies will only be sent to HTTPS (HTTP over SSL) servers. If secure is not specified, a cookie is considered safe to be sent in the clear over unsecured channels.

So mark it as secure if you are, for instance, running a JavaScript shopping cart with SSL.

By comparisons, the Cookie field in a request header contains only a set of NAME=VALUE pairs for the requested URL:

Cookie: name1=VALUE1; name2=VALUE2 …
Multiple Set-Cookie fields can be sent in a single response header from the server.

Note: a cookie that has the same path and name as an existing cookie will overwrite the old one – this can be used as a way of erasing cookies – by writing a new one with an expiry date that has already passed.

For a cookie to persist beyond the current session a valid expiry date must be set. This is a number or date with a value greater than the current time/date value. The best way to set an expiry date is to take the current date value, add a set time period and convert to GMT (remember we're on a global network). Future cookie standards may allow setting a duration rather than on a set date.

The cookie(s) that you set or accept are only accessible at pages with a matching domain name, matching path. Also the cookies must not have reached or passed their expiry date. When these criteria are met the cookies become available to JavaScript via the document.cookie object.

Where are the Cookies stored?

-- Where does MSIE keep its cookies?
Microsoft keeps its cookies in different locations. You will find your cookies in the folder C:\windows\cookies in Windows 9X and C:\WinNT\profiles\username\cookies in Win NT

Each individual domain's cookies are stored in their own file, along with the username that accessed the site. For example, if I went to Yahoo, I would get a cookie that is stored in the file frank@yahoo.txt.

Note: that the username is not sent with the cookie.

-- Where does Netscape keep its cookies?
You will find your cookies file in the folder C:\Program Files\Netscape\Users\YourName then look for cookies.txt

Controlling Cookies within your Browsers

-- If You Want to Control Which Cookies You Accept:
You can order your browser to accept all cookies or to alert you every time a cookie is offered. Then you can decide whether to accept one or not.

If you're using Internet Explorer 4.0:
1. Choose View, then
2. Internet Options.
3. Click the Advanced tab,
4. Scroll down to the yellow exclamation icon under Security and choose one of the three options to regulate your use of cookies.

If you're using Netscape Communicator 4.0:
On your Task Bar, click:
1. Edit, then
2. Preferences, then
3. click on Advanced.
4. Set your options in the box labeled "Cookies".

-- How to See Cookies You've Accepted:
If you're using Internet Explorer 4.0
On your task bar, click:
1. View, then
2. Internet Options.
3. Under the tab General (the default tab) click
4. Settings, then
5. View Files.

Stopping Cookies

The options to allow all or deny all cookie are relatively clear.

The option to warn before accepting cookies is useful when you are developing a site that uses cookies but become annoying when you are browsing the internet. Some servers are able to use cookies to gather information about visitor behavior. When these are incorrectly configured a single page can set a cookie for every graphic.

The intermediate option is to block cookies that do not originate from the current domain. This means that if you are at http://www.foo.com/ and a server at http://www.bar.com/ tries to set a cookie through a banner graphic on the page, that cookie will not be accepted.

Another poplar method is to replace your cookie.txt file with a folder of the same name. This prevents any cookies from being accepted.

HTTP and how it works

When a user requests a page, an HTTP request is sent to the server. The request includes a header that defines several pieces of information, including the page being requested.

The server returns an HTTP response that also includes a header. The header contains information about the document being returned, including its MIME type (such as text/html for a standard HTML page or image/gif for a GIF file).

Cookies and HTTP Headers

Cookie information is shared between the client browser and a server using fields in the HTTP headers.

When the user requests a page for the first time, a cookie (or more than one cookie) can be stored in the browser by a Set-Cookie entry in the header of the response from the server. The set-Cookie field includes the information to be stored in the cookie along with several optional pieces of information, including an expiry date, path, and server information, and if the cookies requires security.

Then, when the user requests a page in the future, if a matching cookie is found among all the stored cookies, the browser sends a Cookie field to the server in request header. The header will contain the information stored in that cookie.

Cookies and CGI scripts

In order for cookies to be useful, it is necessary for the server to be able to take advantage of the cookie information it receives and for the server to be able to generate cookie headers if they are needed. This done primarily done by CGI scripts.

For instance, if you want to provide a custom search tool that would search WWW indices selected by the user, you would need to develop a system that follows this basic pattern:

· User calls the site using an URL that requests a CGI script.

· The script checks whether it is the user’s first time at the site by checking whether there is a cookie field in the HTTP request header.

· If there is no cookie, the script sends back a new search page with all choices unselected and an empty search field.

· If there is a Cookie field, the script interprets the cookie and returns a page with all the user’s previous choices selected.

· When the user conducts a search, the script returns the search results along with a Set-Cookie field in the header to reset the cookie to the newly selected values that the user used for the search.

To implement this type of server-side processing for cookies may require significant increases in the load on a Web server. With this model, most pages are being built dynamically based on receiving cookie information in the header.

This is in contrast to typical Web pages, which are static, and all the server needs to do is send the current file to the client without any additional processing.

Using Hidden Fields

Suppose, for example, you ask for a visitor's name, address, and telephone number. You then want to send them to your catalog page where they can choose which item they wish to order. Instead of asking them for their personal data a second time, you can use a CGI script to collect the data from the first Form and then generate the Hidden Fields that will contain this data in the second Form. Then, when you go to process the data from he second form, all of the fields, including both the items ordered, and the personal data, will be available for your use.

Please enter the following information:

Top of Form

Name

 HTMLCONTROL Forms.HTML:Submitbutton.1
[image: image1.wmf]

John Smith

State
Bottom of Form

	************** HTML FORM **************
<FORM METHOD="POST" ACTION="hidden1.pl">
 Name <INPUT TYPE="text" NAME="name">
 State <INPUT TYPE="text" NAME="state">
 <INPUT TYPE="submit" VALUE="Send Data">
</FORM>

************** HTML FORM **************

Using Hidden Fields

Hidden fields are best generated by the same CGI script that processes the initial form - that is, the one that contains the data to be stored. Then you'll create a second script to process the final form - the one that contains both the new data and the stored data.

The bottom line is - the script that processes the data to be stored should generate the hidden fields in the next form.

Hidden fields are useful but transitory. Once your visitor leaves your site or even jumps to a page that's outside the realm of the interconnected scripts that store and generate the hidden fields, the connection between the visitor and the information you're currently collecting is lost.

Parse the Form using the same procedure as those used in Week 6 Perl CGI's section.

********** hidden1.pl **********
#!/usr/local/bin/perl

read(STDIN, $input, $ENV{'CONTENT_LENGTH'});

@pairs = split(/&/, $input);

foreach $pair (@pairs) {
 ($name, $value) = split(/=/, $pair);
 $value =~ tr/+/ /;
 $value =~ s/%([\dA-Fa-f]{2})/pack("C", hex($1))/eg;
 $formdata{$name} = $value;
}

print "Content-type:text/html\n\n";

print "<HTML>\n";
print "<HEAD><TITLE>Using Hidden Fields</TITLE></HEAD>\n\n";

print "<BODY bgColor=\"white\">\n\n";

print "Thank you, $formdata{'name'}, for entering your personal data.
\n";
print "Now you can choose which items you'd like to purchase.<P>\n";

print "<FORM METHOD=\"POST\" ACTION=\"hidden2.pl\">\n";
print "Item <INPUT TYPE=\"text\" NAME=\"item\" VALUE=\"12345\">\n";

%formdata is the name of the Associative Array the contains the
NAME-VALUE pairs from the Form, ie,
%formdata equals ("name", "John Smith", "state", "California) =>
(NAME1, VALUE1, NAME2, VALUE2) in this case
#
key is equivalent to NAME while $formdata($key) is equivalent to VALUE
keys %formdata equals (name, state)
$formdata(name) is "John Smith" & $formdata(state) is "California"
#
The foreach loop creates the hidden fields for each key-value pair
that was collected from the Form

foreach $key (keys %formdata) {
 print "<INPUT TYPE=\"hidden\" NAME=\"$key\" VALUE=\"$formdata{$key}\">\n";
}

print "<INPUT TYPE=\"submit\" VALUE=\"Send order\">\n";
print "</FORM>\n";

print "</BODY>\n";
print "</HTML>\n";

********** End of hidden1.pl **********
********** hidden2.pl **********
#!/usr/local/bin/perl

read(STDIN, $input, $ENV{'CONTENT_LENGTH'});

@pairs = split(/&/, $input);

foreach $pair (@pairs) {
 ($name, $value) = split(/=/, $pair);
 $value =~ tr/+/ /;
 $value =~ s/%([\dA-Fa-f]{2})/pack("C", hex($1))/eg;
 $formdata{$name} = $value;
}

print "Content-type:text/html\n\n";

print "<HTML>\n";
print "<HEAD><TITLE>Using Hidden Fields</TITLE></HEAD>\n\n";

print "<BODY bgColor=\"white\">\n";

print "The item ordered by $formdata{'name'} from $formdata{'state'} is\n";

print "<P>$formdata{'item'}\n";

print "<P>Thank you for your order. It's on its way.\n\n";

print "</BODY>\n";
print "</HTML>";

********** End of hidden2.pl **********

Cookies And Scripting

JavaScript provides the document.cookie property -- what you put in it isn't necessarily what you will get out of it. The little bit of script below will demonstrate this:

<SCRIPT>

document.cookie = "name=Frank";

document.cookie = "frames=parent";

document.cookie = "java=cool";

alert(document.cookie);

</SCRIPT>

This script will set three cookies (users can see each being set if cookie warnings are turned on in the browser), then pop up an alert box that will contain the string:

"name=Frank; frames=parent; java=cool" -- the three cookies we've set.

Top of Form

Bottom of Form

Cookie Functions

<HTML>
<HEAD>
<TITLE>Cookie Functions</TITLE>

<SCRIPT>

//**
// Cookie Functions -- "Night of the Living Cookie" Version (25-Jul-96)
//
// Written by: Bill Dortch, hIdaho Design <bdortch@hidaho.com>
// The following functions are released to the public domain.
//
// deleteCookie now sets the expiration date to the earliest usable date
// (one second into 1970), and sets the cookie's value to null for good measure.
//
// Also, this version adds optional path and domain parameters to the deleteCookie
// function. If you specify a path and/or domain when creating (setting) a cookie**,
// you must specify the same path/domain when deleting it, or deletion will not occur.
//
// ** Note that it is possible to set multiple cookies with the same
// name but different (nested) paths. For example:
//
// setCookie("color","red",null,"/outer");
// setCookie("color","blue",null,"/outer/inner");
//
// However, getCookie cannot distinguish between these and will return
// the first cookie that matches a given name. It is therefore
// recommended that you *not* use the same name for cookies with
// different paths. (Bear in mind that there is *always* a path
// associated with a cookie; if you don't explicitly specify one,
// the path of the setting document is used.)
//
//**

function getCookieVal(offset) {
 var endstr = document.cookie.indexOf(";", offset);

 if (endstr == -1) endstr = document.cookie.length;

 return unescape(document.cookie.substring(offset, endstr));
}

//
// Function to return the value of the cookie specified by "name".
// name - String object containing the cookie name.
// returns - String object containing the cookie value, or null if
// the cookie does not exist.
//

function getCookie(name) {
 var arg = name + "=";
 var alen = arg.length;
 var clen = document.cookie.length;
 var i = 0;

 while (i < clen) {
 var j = i + alen;

 if (document.cookie.substring(i, j) == arg) return getCookieVal(j);

 i = document.cookie.indexOf(" ", i) + 1;

 if (i == 0) break;
 }
 return null;
}

//
// Function to create or update a cookie.
// name - String object containing the cookie name.
// value - String object containing the cookie value. May contain
// any valid string characters.
// [expires] - Date object containing the expiration data of the cookie. If
// omitted or null, expires the cookie at the end of the current session.
// [path] - String object indicating the path for which the cookie is valid.
// If omitted or null, uses the path of the calling document.
// [domain] - String object indicating the domain for which the cookie is
// valid. If omitted or null, uses the domain of the calling document.
// [secure] - Boolean (true/false) value indicating whether cookie transmission
// requires a secure channel (HTTPS).
//
// The first two parameters are required. The others, if supplied, must
// be passed in the order listed above. To omit an unused optional field,
// use null as a place holder. For example, to call setCookie using name,
// value and path, you would code:
//
// setCookie("myCookieName", "myCookieValue", null, "/");
//
// Note that trailing omitted parameters do not require a placeholder.
//
// To set a secure cookie for path "/myPath", that expires after the
// current session, you might code:
//
// setCookie(myCookieVar, cookieValueVar, null, "/myPath", null, true);
//

function setCookie(name, value, expires, path, domain, secure) {
 document.cookie = name + "=" + escape(value) +
 ((expires) ? "; expires=" + expires.toGMTString() : "") +
 ((path) ? "; path=" + path : "") +
 ((domain) ? "; domain=" + domain : "") +
 ((secure) ? "; secure" : "");
}

// Function to delete a cookie. (Sets expiration date to start of epoch)
// name - String object containing the cookie name
// path - String object containing the path of the cookie to delete. This MUST
// be the same as the path used to create the cookie, or null/omitted if no path was
// specified when creating the cookie.
// domain - String object containing the domain of the cookie to delete. This MUST
// be the same as the domain used to create the cookie, or null/omitted if
// no domain was specified when creating the cookie.
//

function deleteCookie(name, path, domain) {
 if (getCookie(name)) {
 document.cookie = name + "=" +
 ((path) ? "; path=" + path : "") +
 ((domain) ? "; domain=" + domain : "") "; +
 expires=Thu, 01-Jan-70 00:00:01 GMT";
 }
}

</SCRIPT>

</HEAD>

<BODY>

<SCRIPT>

/************* EXAMPLES *************/

var expdate = new Date();
// 24 (hrs) * 60 (mins) * 60 (secs) * 1000 (msecs) => 24 hrs from now
expdate.setTime(expdate.getTime() + (24 * 60 * 60 * 1000)); // when the cookie will expire

// OR
// get today's date (getDate()) and add one day (24 hrs)
// expdate.setDate(expdate.getDate() + 1); // produces the same result as above

setCookie"cname", "hIdaho Design ColorCenter", expdate);
setCookie("cpath", "http://www.hidaho.com/colorcenter/", expdate);
setCookie("goner", "This cookie must die!");
setCookie("paranoid", "This cookie requires secure communications", expdate, "/", null, true);
setCookie("tempvar", "This is a temporary cookie.");
setCookie("ubiquitous", "This cookie will work anywhere in this domain", null, "/");

document.write(document.cookie + "<P>");

deleteCookie("goner");

document.write(document.cookie+ "<P>");

document.write("ccname = " + getCookie("cname") + "
");
document.write("ccpath = " + getCookie("cpath") + "
");
document.write("goner = " + getCookie("goner") + "
");
document.write("paranoid = " + getCookie("paranoid") + "
");
document.write("tempvar = " + getCookie("tempvar") + "
");
document.write("ubiquitous = " + getCookie("ubiquitous") + "
");

</SCRIPT>

</BODY>
</HTML>

The results of the above script are shown below:

cname=hIdaho%20Design%20ColorCenter;
cpath=http%3A//www.hidaho.com/colorcenter/;
goner=This%20cookie%20must%20die%21; tempvar=This%20is%20a%20temporary%20cookie.; ubiquitous=This%20cookie%20will%20work%20anywhere%20in%20this%20domain

cname=hIdaho%20Design%20ColorCenter;
cpath=http%3A//www.hidaho.com/colorcenter/;
goner;
tempvar=This%20is%20a%20temporary%20cookie.; YourCookie3=AnotherValue; ubiquitous=This%20cookie%20will%20work%20anywhere%20in%20this%20domain

cname = hIdaho Design ColorCenter
cpath = http://www.hidaho.com/colorcenter/
goner = null
paranoid = null
tempvar = This is a temporary cookie.
ubiquitous = This cookie will work anywhere in this domain

Cookie Functions

function setCookie(name, value, expires, path, domain, secure) {
 document.cookie =
 name + "=" + escape(value) +
 ((expires) ? "; expires=" + expires.toGMTString() : "") +
 ((path) ? "; path=" + path : "") +
 ((domain) ? "; domain=" + domain : "") +
 ((secure) ? "; secure" : "");
}

function getCookie(name) {
 var arg = name + "=";
 var alen = arg.length;
 var clen = document.cookie.length;
 var i = 0;
 while (i < clen) {
 var j = alen + i;
 if (document.cookie.substring(i, j) == arg) return getCookieVal(j);
 i = document.cookie.indexOf(" ", i) + 1;
 if (i == 0) break;
 }
 return null;
}

function getCookieVal(offset) {
 var endstr = document.cookie.indexOf(";", offset);
 if (endstr == -1) endstr = document.cookie.length;
 return unescape(document.cookie.substring(offset, endstr));
}

function deleteCookie (name, path, domain) {
 if (getCookie(name)) {
 document.cookie =
 name + "=" +
 ((path) ? "; path=" + path : "") +
 ((domain) ? "; domain=" + domain : "") +
 "; expires=Thu, 01-Jan-70 00:00:01 GMT";
 }
}

Register Your Name with the Cookie-Meister

Below is the "Cookie Dump":

TheCoolJavaScriptPage=Frank;

Welcome Back, Frank.

Please enter your name. When you return to this page within a year, you will be greeted with a personalized greeting.
Top of Form

Enter your name: [image: image4.wmf]

 [image: image5.wmf]Register

Bottom of Form

<SCRIPT>

function setCookie(name, value, expire) {
 document.cookie = name + "=" + escape(value) +
 ((expire == null) ? "" : ("; expires=" +expire.toGMTString()));
}

function getCookie(Name) {
 var search = Name + "=";

 if (document.cookie.length > 0) { // if there are any cookies
 offset = document.cookie.indexOf(search);

 if (offset != -1) { // if cookie exists
 offset += search.length; // set index of beginning of value
 end = document.cookie.indexOf(";", offset); // set index of end of cookie value

 if (end == -1) end = document.cookie.length;
 return unescape(document.cookie.substring(offset, end));
 }
 }
}

function register(name) {
 var today = new Date();
 var expires = new Date();

 expires.setTime(today.getTime() + 365 * 24 * 60 * 60 * 1000);

 setCookie("TheCoolJavaScriptPage", name, expires);
}

</SCRIPT>

<H1>Register Your Name with the Cookie-Meister</H1>

<SCRIPT>

document.write(document.cookie);

var yourname = getCookie("TheCoolJavaScriptPage")

if (yourname != null) document.write("Welcome Back, ", yourname)
else document.write("You haven't been here in the last year...")

</SCRIPT>

Enter your name. When you return to this page within a year, you will be greeted with a personalized greeting.

<FORM onSubmit="return false">
 Enter your name: <INPUT TYPE="text" NAME="username">
 <INPUT TYPE="button" value="Register"
 onClick="register(this.form.username.value); history.go(0)">
</FORM>

Annotated Version

<SCRIPT>

// get the "TheCoolJavaScriptPage" if it exist
var yourname = getCookie("TheCoolJavaScriptPage")

// if the cookie yourname exist then write out the Name
if (yourname != null) document.write("<P>Welcome Back, ", yourname)
// else if the cookie yourname does not exist then write out "You haven't
else document.write("<P>You haven't been here in the last year...")

</SCRIPT>

Enter your name. When you return to this page within a year, you will be greeted with a personalized greeting.

<FORM onSubmit="return false">
 Enter your name: <INPUT TYPE="text" NAME="username">
 <INPUT TYPE="button" value="Register"
 onClick="register(this.form.username.value); history.go(0)">
</FORM>

onClick call the function register() & pass it the User's Name
register() set the expiration time for the cookie & then calls the setCookie() function where we create the "actual" cookie.

history.go(0) means go no where but reload the page so that we can check for cookie values.

Register Your Name with the Cookie-Meister

Welcome Back, Frank.

<SCRIPT>

function setCookie(name, value, expire) {
 document.cookie = name + "=" + escape(value) +
 ((expire == null) ? "" : ("; expires=" +expire.toGMTString()));
}

function getCookie(Name) {
 var search = Name + "=";

 if (document.cookie.length > 0) { // if there are any cookies
 offset = document.cookie.indexOf(search);

 if (offset != -1) { // if cookie exists
 offset += search.length; // set index of beginning of value
 end = document.cookie.indexOf(";", offset); // set index of end of cookie value

 if (end == -1) end = document.cookie.length;
 return unescape(document.cookie.substring(offset, end));
 }
 }
}

function register(name) {
 var today = new Date();
 var expires = new Date();

 expires.setTime(today.getTime() + 365 * 24 * 60 * 60 * 1000);

 setCookie("TheCoolJavaScriptPage", name, expires);
}

</SCRIPT>

<H1>Register Your Name with the Cookie-Meister</H1>

<SCRIPT>

var yourname = getCookie("TheCoolJavaScriptPage")

// If yourname is not null then welcome the user back with "Welcome ...
// If yourname is null then write out "You haven't ... and also the <FORM>etc...</FORM>

if (yourname != null) document.write("Welcome Back, ", yourname)
else (yourname == null) {
 document.write("You haven't been here in the last year...")
 document.write("Please enter your name. ");
 document.write("When you return to this page within a year,");
 document.write(" you will be greeted with a personalized greeting.");

 document.write('<FORM ONSUBMIT="return false">');
 document.write('<P>Enter your name: ");
 document.write('<INPUT TYPE="text" NAME="username" SIZE="10">');
 document.write('<INPUT TYPE="button" VALUE="Register"');
 document.write('onClick="register(this.form.username.value); history.go(0)">');
 document.write('</FORM>');
}

</SCRIPT>

Cookie Paths & how they work

NOTE: The Cookies are Created in Week 1.

Three "TestPath" Cookies are Created.

· setCookie("TestPath", "TestPath no path assigned", expdate);

· The Cookie "TestPath" is created with the Value "TestPath and no path is assigned"

· When no path is assigned the path will automatically be the current directory. This means that directories beneath /jscript/week1 have the capability to read this Cookie.

· setCookie("TestPath", "TestPath Week 2", expdate, "/jscript/week2");

· The Cookie "TestPath" is created with the Value "TestPath Week 2"

· Here we are setting the path to /jscript/week2. This means that directories beneath /jscript/week2 have the capability to read this Cookie. Any directory not within week2 will not have access to this particular cookie.

· setCookie("TestPath", "TestPath /", expdate, "/");

· The Cookie "TestPath" is created with the Value "TestPath /"

· Here we are setting the path to the root. All directories will have access this Cookie.

One "Week7" Cookie is Created.

· setCookie("Week7", "Week 7 Cookie Path Test", expdate, "/jscript/week7");

· The Cookie "Week7" is created with the Value "Week 7 Cookie Path Test"

· Here we are setting the path to /jscript/week7. This means that directories beneath /jscript/week7 have the capability to read this Cookie. Any directory not within week7 will not have access to this particular cookie.

/jscript/week1

The "Cookie Dump" in /jscript/week 1 shows the two Cookies:

· TestPath=TestPath no path assigned;

· TestPath=TestPath /;

So when we do:

document.write("TestPath = " + getCookie("TestPath") + "
");
document.write("Week7 = " + getCookie("Week7") + "
");

we get:

TestPath = TestPath no path assigned
Week7 = null

So what does all this mean? Remember, we created a Cookie in Week 1 "TestPath" with a Value "TestPath no path assigned" and no path was assigned. When no path is assigned the path will automatically be the current directory. getCookie("TestPath") looks to see if there is a Cookie "TestPath" assigned to the current directory. If there is a Cookie "TestPath" assigned to that directory it then "grabs" that Cookie, if there isn't it looks at its parent directory to see if there is a Cookie "TestPath" assigned to that directory. This process is continued until the root is reached.

getCookie("TestPath") looks to see if there is a Cookie "TestPath" assigned to the current directory -- YES -- Cookie "TestPath" with Value the "TestPath no path assigned".

getCookie("Week7") is not assigned to Cookie's current directory (/jscript/week1) or its parent directory (/jscript) or even the root (/), so the value is null.

/jscript/week1/cookies

The "Cookie Dump" in /jscript/week1/cookies shows the two Cookies:

· TestPath=TestPath no path assigned;

· TestPath=TestPath /;

So when we do:

document.write("TestPath = " + getCookie("TestPath") + "
");
document.write("Week7 = " + getCookie("Week7") + "
");

we get:

TestPath = TestPath no path assigned
Week7 = null

getCookie("TestPath") looks to see if there is a Cookie "TestPath" assigned to the current directory (/jscript/week1/Cookies) -- NO. Next it look at its parent directory (/jscript/week1) to see if there is a Cookie "TestPath" assigned to that directory -- YES -- Cookie "TestPath" with Value the "TestPath no path assigned".

getCookie("Week7") is not assigned to Cookie's current directory (/jscript/week1/Cookies) or to its parent directory (/jscript/week1) or its parent-parent directory (/jscript) or even the root (/), so the value is null.

/jscript/week2

The "Cookie Dump" in /jscript/week 2 shows the two Cookies:

· TestPath=TestPath Week 2;

· TestPath=TestPath /;

So when we do:

document.write("TestPath = " + getCookie("TestPath") + "
");
document.write("Week7 = " + getCookie("Week7") + "
");

we get:

TestPath = TestPath Week 2
Week7 = null

getCookie("TestPath") looks to see if there is a Cookie "TestPath" assigned to the current directory (/jscript/week2) -- YES -- Cookie "TestPath" with Value the "TestPath Week 2".

getCookie("Week7") is not assigned to Cookie's current directory (/jscript/week2) or to its parent directory (/jscript) or even the root (/), so the value is null.

/jscript/week7

The "Cookie Dump" in /jscript/week 7 shows the two Cookies:

· TestPath=TestPath /;

· Week7=Week 7 Cookie Path Test;

So when we do:

document.write("TestPath = " + getCookie("TestPath") + "
");
document.write("Week7 = " + getCookie("Week7") + "
");

we get:

TestPath = TestPath /
Week7 = Week 7 Cookie Path Test

getCookie("TestPath") looks to see if there is a Cookie "TestPath" assigned to the current directory (/jscript/week7) -- NO. Next it look at its parent directory (/jscript) to see if there is a Cookie "TestPath" assigned to that directory -- NO. Next it looks at root directory (/) to see if there is a Cookie "TestPath" assigned to that directory -- YES -- Cookie "TestPath" with Value the "TestPath /".

getCookie("Week7") looks to see if there is a Cookie "Week7" assigned to the current directory (/jscript/week7) -- YES -- Cookie "Week7" with Value the "Week 7 Cookie Path Test".

Cookies Created in Week 1

<SCRIPT>

var expdate = new Date();

expdate.setTime(expdate.getTime() + (24 * 60 * 60 * 1000)); // 24 hrs from now

setCookie("TestPath", "TestPath no path assigned", expdate);
setCookie("TestPath", "TestPath Week 2", expdate, "/jscript/week2");
setCookie("TestPath", "TestPath /", expdate, "/");
setCookie("Week7", "Week 7 Cookie Path Test", expdate, "/jscript/week7");

document.write(unescape(document.cookie) + "<P>");

document.write("TestPath = " + getCookie("TestPath") + "
");
document.write("Week7 = " + getCookie("Week7") + "
");

</SCRIPT>

Cookies Displayed

<SCRIPT>

document.write(unescape(document.cookie) + "<P>");

document.write("TestPath = " + getCookie("TestPath") + "
");
document.write("Week7 = " + getCookie("Week7") + "
");

</SCRIPT>

#!/usr/local/bin/perl

###

$VERSION="cookietest.pl v1.1"; #Aug. 18, 1996 Dale Bewley

v1.0 29 June 96, v0.9 14 May 96

#---

This script and others found at http://www.bewley.net/perl/

#

Simple cookie demo.

For more info see:

#
http://www.bewley.net/perl/cookie-test.html

#

Distributed through Cookie Central. http://www.cookiecentral.com.

#

##

#- User configurable variables --#

#ftp://ftp.ind.net/pub/nic/rfc/rfc822.txt Section 5.1

$expDate = "Wednesday, 09-Dec-99 00:00:00 GMT";

#set this to your domain prepended with a .

$theDomain = ".sislands.com";

$path = "/";

#--#

#- Main Program ---#

&setCookie("user", "frank", $expDate, $path, $theDomain);

&setCookie("user_addr", $ENV{'REMOTE_HOST'}, $expDate, $path, $theDomain);

&setCookie("flag", "black", $expDate, "/", ".sislands.com");

&setCookie("car", "honda:accord:88:LXI:green", $expDate, "/", $theDomain);

be sure to print a MIME type AFTER cookie headers and follow with a blank line

print "Content-type: text/html\n\n";

this is the first thing the user sees in the browser

print "\nReload for Cookies:
";

%cookies = &getCookies; # store cookies in %cookies

foreach $name (keys %cookies) {

print "\n$name = $cookies{$name}";

}

#--#

#- Set Cookie ---#

sub setCookie {

end a set-cookie header with the word secure and the cookie will only

be sent through secure connections

local($name, $value, $expiration, $path, $domain, $secure) = @_;

print "Set-Cookie: ";

print ($name, "=", $value, "; expires=", $expiration,

"; path=", $path, "; domain=", $domain, "; ", $secure, "\n");

}

#--#

#- Retrieve Cookies From ENV --#

sub getCookies {

cookies are seperated by a semicolon and a space, this will split

them and return a hash of cookies

local(@rawCookies) = split (/; /,$ENV{'HTTP_COOKIE'});

local(%cookies);

foreach(@rawCookies){

 ($key, $val) = split (/=/,$_);

 $cookies{$key} = $val;

}

return %cookies;

}

#--#

47

_1042722478.unknown

_1042722479.unknown

_1042722475.unknown

_1042722476.unknown

_1042722474.unknown

