Order Forms Example

WEST OF THE ROCKIES
Top of Form

	ITEM NO.
	PRODUCT
	CASE/PACK
	CASE PRICE
	QTY
	TOTAL

	63732 10116
	PUTTANESCA SAUCE
	12/16 OZ.
	69.95
	[image: image36.png]

	[image: image2.wmf]

	
	[image: image3.wmf]

EAST OF THE ROCKIES
	ITEM NO.
	PRODUCT
	CASE/PACK
	CASE PRICE
	QTY
	TOTAL

	63732 10116
	PUTTANESCA SAUCE
	12/16 OZ.
	72.95
	[image: image4.wmf]

0

	[image: image5.wmf]

	
	[image: image6.wmf]

Bottom of Form

Order Form Naming Convention

There are two forms, one for West of the Rockies and one for East of the Rockies. The naming conventions reflect the fact that they both use the same functions.

West of the Rockies:

<SELECT NAME="pw1" ONCHANGE="calculate(this, 69.95)">
 <OPTION VALUE="0">0
 <OPTION VALUE="1">1
 <OPTION VALUE="2">2
 <OPTION VALUE="3">3
 etc...
</SELECT>
<INPUT TYPE="text" NAME="tw1" VALUE>
etc...
<INPUT TYPE="text" NAME="totalw" VALUE>

pw1 = Price West (Item) 1 and 69.95 = the Item's Price
<SELECT NAME="pw1" onChange="calculate(this, 69.95)">

tw1 = Total West (Item) 1
<INPUT TYPE="text" NAME="tw1" VALUE>

totalw = Total West - Total for all the Items on the West Form
<INPUT TYPE="text" NAME="totalw" VALUE>

East of the Rockies:

<SELECT NAME="pe1" ONCHANGE="calculate(this, 69.95)">
 <OPTION VALUE="0">0
 <OPTION VALUE="1">1
 <OPTION VALUE="2">2
 <OPTION VALUE="3">3
 etc...
</SELECT>
<INPUT TYPE="text" NAME="te1" VALUE>
etc...
<INPUT TYPE="text" NAME="totale" VALUE>

pe1 = Price East (Item) 1 and 72.95 = the Item's Price
<SELECT NAME="pe1" onChange="calculate(this, 72.95)">

te1 = Total East (Item) 1
<INPUT TYPE="text" NAME="te1" VALUE>

totale = Total East - Total for all the Items on the East Form
<INPUT TYPE="text" NAME="totale" VALUE>

Order Form Calculations

function calculate(fld, price) {
 var dir = fld.name.charAt(1);
 var num = fld.name.charAt(2);
 var quant = fld.options[fld.selectedIndex].value;
 var subtotal = eval(quant * price);
 eval('document.order.t' + dir + num).value = fix(subtotal);
 var total = 0;

 for (i = 1; i < 8; i++) {
 var itemTotal = eval('document.order.t' + dir + i).value;
 if (parseFloat(itemTotal) > 0) total += parseFloat(itemTotal);
 }

 eval('document.order.total' + dir).value = fix(total);
}

function fix(total) {
 var dollars = Math.floor(total); // var dollars = parseInt(total);
 var cents = total - dollars;
 cents = Math.round(100 * cents);
 if (cents < 10) cents = "0" + cents;
 if (dollars == total) cents = "00";
 total = dollars + "." + cents;
 return total;
}

Order Form Calculations

function calculate(fld, price) { // fld will equal pw1 or pe1
 var dir = fld.name.charAt(1); // used to determine whether it is the East or West Form
 var num = fld.name.charAt(2); // what Item number is it
 // how many of the items did the User choose
 var quant = fld.options[fld.selectedIndex].value; var subtotal = eval(quant * price);
 // the eval converts a string to an Object property - in this case the value
 // dir = East or West & num = Item number
 // with this information we can post the result to appropriate Form &
 // to the appropriate Field on the Form
 eval('document.order.t' + dir + num).value = fix(subtotal);
 var total = 0;
 // this loop sums the totals for each of the Items to give us
 // the Grand Total for that particular Form
 for (i = 1; i < 8; i++) {
 // does that particular Item have a "total" -
 // in other words did the User choose this Item
 var itemTotal = eval('document.order.t' + dir + i).value;
 // total is a running sum of the Form's "subtotals"
 if (parseFloat(itemTotal) > 0) total += parseFloat(itemTotal);
 }
 // prior to sticking in the Grand Total into the Total Field
 // we need to "dollarize" the number
 eval('document.order.total' + dir).value = fix(total);
}

// a number like 6.6 should ultimatley read as $6.60 and not $6.6
// a number like 6.6275 should ultimatley read as $6.63
// the fix(total) function takes care of these particular problems
function fix(total) { // ie, total == 6.6275
 var dollars = Math.floor(total); // dollars = 6
 var cents = total - dollars; // 6.6275 - 6 = .6275
 cents = Math.round(100 * cents); // 63
 if (cents < 10) cents = "0" + cents;
 if (dollars == total) cents = "00";
 total = dollars + "." + cents; // 6.63
 return total
}

Credit Card "Validation"

Top of Form

	Credit Card Number:
[image: image7.wmf]

	Type of Card:
[image: image8.wmf]

	Expiration
Month: [image: image9.wmf]

Year: [image: image10.wmf]

	Card Holder Name:
[image: image11.wmf]

	[image: image12.wmf]

S

ubmit Form

 [image: image13.wmf]Clea

r

Bottom of Form

Credit Card "Validation"

// The function determines whether a Credit Card number is "valid"
// Please note that a "valid" Credit Card number is not essentially a Credit Card in
// "Good Standing"

function isValidCreditCard(number) {
 if (number.indexOf("-")) {
 cc = number.split("-");
 number = "";
 for (var i = 0; i < cc.length; i++) number += cc[i];
 }

 // Another Version of what was performed above using String & Array Methods
 if (number.indexOf(" ")) {
 cc = number.split(" ");
 number = cc.join("");
 }

 // The rest of the algorithm is beyond the scope of this course

 if (number.length > 19) return (false);

 sum = 0; mul = 1; l = number.length;

 for (i = 0; i < l; i++) {
 digit = number.substring(l - i - 1, l - i);
 tproduct = parseInt(digit, 10) * mul;
 if (tproduct >= 10) sum += (tproduct % 10) + 1;
 else sum += tproduct;
 if (mul == 1) mul++;
 else mul--;
 }

 if ((sum % 10) == 0) return (true);
 else return (false);
}

Credit Card "Validation"

// When users type their Credit Card number
// they usually use hyphens to separate the numbers into blocks
function isValidCreditCard(number) {
 if (number.indexOf("-")) { // checking to see if there is a hyphen
 // split out the numbers from the string which is delimited by the (-)
 // & put the individual number blocks into individual array elements
 // ie, number = "12-34" =>
 // cc = number.split("-") => cc[0] == 12 & cc[1] == 34
 cc = number.split("-");
 number = ""; // "empty" the variable so that we can "reuse" it

 for (var i = 0; i < cc.length; i++) {

 // here we are rebuilding the string (number) without the delimiter (-)
 number += cc[i];
 }
 }

 // instead of splitting on the (-) this time split on a space
 if (number.indexOf(" ")) {
 cc = number.split(" ");
 number = cc.join("");
 }

CGI Introduction

If you've done any Perl scripting, you're probably familiar with the acronym CGI (Common Gateway Interface). Each word in the acronym Common Gateway Interface helps you to understand the interface:

· Common - interacts with many different operating systems (ie, UNIX, Windows, or MacOS).

· Gateway - provides users with a way to gain access to different programs, such as scripts, executables, databases, or picture generators.

· Interface - uses a well-defined method to interact with a Webserver.
It's simply a portal for communication between the Webserver and any other program or script that it can access. But CGI is not a programming language! In essence, CGI is a server-side process that serves as a go-between for the Webserver and other applications programs, information resources, and databases. These information resources and databases can reside on the same physical machine as the Webserver or on a machine at some other geographical location.

CGI gives you a way to make Web sites dynamic and interactive. CGI just makes it possible for a Webserver to pass information (such as what host the user is connecting from, or input the user has supplied through an HTML form) to another program. The program then processes that data and the server then "captures" the resulting output from that program — typically a web page — and passes the program's response back to the Web browser. With CGI, you can write scripts that create interactive, user-driven applications.

CGI Overview

[image: image14.png]ool
Progans
esponse

Rather than limiting the Web to documents written ahead of time, CGI enables Web pages to be created on the fly, based upon the input of users. You can use CGI scripts to create a wide range of applications, from surveys to search tools, from Internet service gateways to quizzes and games. You can count the number of users who access a document or let them sign an electronic guest book. You can provide users with all types of information, collect their comments, and respond to them.

CGI's strength is its flexibility. CGI can be used to develop applications on nearly every Webserver in existence. Another important advantage of CGI is that it doesn't really care what script or programming language you use for your applications. It simply passes the message between the Webserver and the host computer.

CGI "scripts" are commonly written in Perl, but they can also be written in C, C++, COBOL, TCL/Tk, Python, Visual Basic, AppleScript, UNIX Shell scripts (Bourne, csh, etc.), or any other language that the host computer can understand. Since most of these programming and scripting languages are available on all the popular operating systems, running CGI scripts is an option for just about anyone.

There are significant downsides to CGI scripts as well. The main one is that CGI scripts act like any other program or script running on a computer — they need to be owned and executed by someone. Given the fundamental openness of the Web, this creates a number of problems.

The first is that, in most cases, there's a single user account associated with the Webserver—often called something like WEBUSER. Every time a web page accesses an application through CGI, a new instance of that user is created to run the requested program. This means that if you have a large, complicated shopping cart program on your site and 100 users are visiting, 100 copies of that program are being simultaneously executed by WEBUSER. This creates a definite performance problem.

NOTE: Just about all the new Webservers today have solved the problem of having to create a new instance of a CGI process for each requested program. The CGI requests all run in one process with each request running as a separate thread.

A further problem for CGI applications is security. Since every CGI application is executed by the same user account (e.g. WEBUSER), every application accessible through CGI needs to have permissions set that allow WEBUSER to execute it, but not necessarily to read or modify it. There are ways to handle these security issues; the point is that it is easy to leave files compromised, especially if you are a novice to CGI and/or permission management.

Regardless of the performance and security issues, CGI is by far the most common way for Webservers to access other applications. Its success may be attributable to the fact that it's straightforward, cross-platform, and compatible with traditional languages such as C and Perl.

There are a number of ways to access databases through CGI, particularly using Perl libraries or custom C code. Many more sophisticated web database application servers can provide some portion of their capabilities as a CGI application. Most of these sophisticated platforms, however, use API access instead.

Gateway Program, CGI Program, or CGI Script?
Gateway program, CGI program, and CGI script are essentially three names for the same thing. CGI programs contain the code that accepts data from the Webserver (most often passed on from its Web clients) and does something with that data. Tasks can range from various forms of processing, accessing information resources, creating output, or all of these. CGI programs can be developed in virtually any language supported on the Webserver host machine, including compiled and interpreted languages such as C, C++, Java, JavaScript, Visual Basic, FORTRAN, Perl, Awk, Expect, and Tcl, as well as some of the newer Perl extensions for client/server database access--for example, Sybperl and Oraperl.

How Does CGI Work?
CGI programs are always placed on a disk that the Webserver has access to. This means that if you are using a dial-up account to maintain your Web site, you need to upload your CGI programs to the server before they can be run.

Webservers are generally configured so that all CGI applications are placed into a cgi-bin directory. However, the Webserver may have aliases so that "virtual directories" exist. Each user might have his or her own cgi-bin directory. The directory location is totally under the control of your Web site administrator.

API

You probably treat most of the applications you use like a black box— put information into the program and get out the results the creator of the application intended. But many power users and developers need slightly different implementations of existing features. That's when an Application Programming Interface (API) comes in handy.

An API helps you "program the program" by accessing the internal functions used by the application for its own tasks. If you ever created a macro in Word or Excel, or designed behaviors in Dreamweaver, you were probably using the built-in interface to program the application itself. The form that an API takes can vary, but the underlying idea is that some portion of the guts of the application are exposed for your manipulation. You're limited in the kinds of changes you can make to the fundamental actions inside the application, but otherwise your imagination is the only limit.

Most modern Webservers have APIs that allow custom functionality to be built right into them. In terms of web database connectivity, the API is typically used to create a line of communication between the Webserver and the web database application server that bypasses CGI. You could build your own custom code that interfaces directly with the Webserver and the database, or you could use a commercial product (such as Active Server Pages - ASP, ColdFusion, and so on) that does the same thing.

The biggest advantage of API-based Webserver access is speed. Instead of a new process being required for each instance of an application called by the Webserver, a single multi-threaded application can handle all the traffic. This arrangement can drastically improve the performance of web applications.

Since the API doesn't have to be compatible with other Webserver APIs (unlike CGI, which is the same on all platforms), a great deal of optimization can be done to improve communication between the server and other applications. This optimization not only improves performance, but also allows more sophisticated security since the application accessed through the server API runs pretty much like it actually is the server.

The tradeoff for all the advantages of API access methods is that each Webserver has a different API and any application must be customized for a given API. This means that custom developers tend to stay on a single platform (Netscape Webservers, or Internet Information Servers (IIS) for example) to reduce their workload. It also means that commercial products that work with multiple Webserver APIs are more complex (and thus more expensive) to develop.

Summary
CGI programs were shown to be invoked by a URL. The URL could be entered directly into a Web browser or stored in a Web page as a hypertext link or the destination for HTML form information.

Before CGI program can be run under the UNIX operating systems, their file permissions need to be set correctly. Files have three types of permissions: read, write, and execute. And there are three types of users that access files: user, group, and others. CGI programs must be both readable and executable by others.

The first line of output of any CGI program must be some type of HTTP header. The most common header is Content-type:, which basically tells the Web browser what to expect (plain text, perhaps? Or maybe some HTML). The Location: header redirects the Web browser to another URL. The Set-cookie: header stores a small bit of information on the visitor's local disk. The last header is Status:, which tells the Web browser that an error has arisen.

By placing a / or ? at the end of a URL, information can be passed to the CGI program. Information after a / is placed into the PATH_INFO environment variable. Information after a ? is placed into the QUERY_STRING Environment Variable.

Environment Variables play a big role in CGI programs. They are the principal means that Webservers use to provide information. For example, you can find out the client's IP address using the REMOTE_ADDR variable. And the SCRIPT_NAME variable contains the name of the current program.

URL encoding is used to prevent characters from being misinterpreted. For example, the < character is usually encoded as %3C. In addition, most spaces are converted into plus signs.

One of the biggest security risks happens when a user's data (form input or extra path information) is exposed to operating system commands such as mail or grep. Never trust user input! Always suspect the worst. Most hackers spend many hours looking at manuals and source code to find software weaknesses. You need to read about Web security in order to protect your site.

Cookies are used to store information on the user's hard drive. They are a way to create persistent information that lasts from one visit to the next.

GET & POST Methods
Client Sends Request

Parameters to a CGI program are transferred either: 1) in the URL, or 2) in the body text of the request. The method used to pass parameters is determined by the METHOD attribute of the <FORM> tag. Before data supplied on a form can be sent to a CGI program, each Form element's name (specified by the NAME attribute) is equated with the VALUE entered by the user to create a NAME=VALUE pair. For example, if the user entered "30" when asked for his or her age, the NAME=VALUE pair would be "age=30". In the transferred data, NAME=VALUE pairs are separated by the ampersand (&) character.

Since under the GET method the form information is sent as part of the URL, Form information can't include any spaces or other special characters that are not allowed in URLs, or characters that have other meanings in URLs, like slashes (/). (For the sake of consistency, this constraint also exists when the POST method is being used.) Therefore, the Web browser performs some special encoding on user-supplied information.

The GET method says to transfer the data within the URL itself; for example, under the GET method, the browser might initiate the HTTP transaction as follows:

GET HTTP/1.1 /cgi-bin/addrform.pl?first=John&last=Smith

The POST method says to use the body portion of the HTTP request to pass parameters. The same transaction with the POST method would read as follows:

POST HTTP/1.1 /cgi-bin/addrform.pl

 ... [More headers here]

first=John&last=Smith

The "first" and "last" variable names that were defined in the HTML form, coupled with the values entered by the user. An ampersand (&) is used to separate the NAME=VALUE pairs.

To summarize a client browser can make a CGI request to a server by either of 2 Methods:

· GET - The client appends data to the URL it passes to the server.

· Disadvantages:

· some browsers are limited ~ 1,000 chars

· visible in the address window

· a user can manipulate the URL - the GET portion.

· POST - The client sends data to the server by way of the HTTP message data field, thereby overcoming size limitations inherent to the GET method.

The client initiates a CGI process by clicking any of the following on an HTML page:

· A hypertext link that runs the script directly.

· The "Submit" button in an HTML form.

Server Receives Request
The URL that the client browser sends to the server contains the name of the CGI script or application to be run. The server compares the file name’s extension to the server's Script Mapping registry key to determine which executable to launch. The NT server, for example, has Script Map entries for .cmd and .bat files, which launch Cmd.exe; and for .idc files, which launch the Internet Database Connector, just to name a few.

Server Passes Request to Application
The server passes information to the CGI application by means of Environment Variables, then launches the "CGI" application. Some of these variables are server-related; the majority come from the client browser and relate either to the client browser or to the request it is sending.

CGI Application Returns Data to Server
The application performs its processing. If it is appropriate, the application then writes data in a format the client can receive to the Standard Output stream (STDOUT). The application must follow a specific format in returning data:

· The first line or lines contain server directives, and must contain the MIME (Multipurpose Internet Mail Extensions) Content-type. Other server directives are Location (which redirects the client to, or returns, another document) and Status.

· A blank line must follow server directives.

· The data the application returns to the client follows the blank line.

Server Returns Data to Client
The server takes the data it receives from STDOUT and adds standard HTTP headers. It then passes the HTTP message back to the client.

NAME=VALUE pairs

· The <FORM> tag defines the METHOD used for the form (either GET or POST) and the ACTION to take when the form is submitted -- that is, the URL of the CGI program to pass the parameters to.

· The <INPUT> tag can be used in many different ways. In its first two invocations, it creates a text input field and defines the variable name to associate with the field's contents when the form is submitted. The first field is given the variable name "firstname" and the second field is given the name "lastname."

· In its last two invocations, the <INPUT> tag creates a "submit" button and a "reset" button.

· The </FORM> tag indicates the end of the form.

When the user presses the "Submit" button, the data entered into the <INPUT> text fields is passed to the CGI program specified by the action attribute of the <FORM> tag.

Top of Form

Name:
[image: image15.wmf]

John Smith

Address:
[image: image16.wmf]

100 Main St

Los Altos, CA 94024

[image: image17.wmf]

Female
[image: image18.wmf]Male
[image: image19.wmf]

Add details to our mailing list?
[image: image20.wmf]

S

ubmit

 [image: image21.wmf]R

eset

Bottom of Form

What is send to the server are the NAME=VALUE pairs:

Name=John+Smith&
Address=100+Main+St%0D%0A%2C+CA++94024&
Gender=Male&
Add=True

Notice that every ampersand (&) delimits a single piece of data in the query string, and that the spaces have been translated into ‘+’ signs. Other characters are referenced by their ANSI code in hexadecimal, and preceded by a % character. For example:

· %OD%OA is just the return and line feed characters, Chr(13) and Chr(10),

· %2C is a comma (,)

· % itself is %25.

This is an example of URL Encoding.

The GET Method
The GET method is used to pass user input to an HTML form to a CGI program for processing. Although GET is the default value for the METHOD attribute, it is considered to be the less-preferred method for forms-input handling because of limitations on the amount of data that can be passed using GET (a limitation not incurred by using the POST method). Because writing CGI programs that obtain their input from the QUERY-STRING Environment Variable is very straightforward, GET still is useful for simpler forms with only a few input objects. A fair number of older HTML and CGI programs still exist that use GET.

Forms which use the GET method also submit their data as part of the URL. The data is sent as a series of NAME=VALUE pairs, separated by ampersands. The listing below shows a forms-based version of the address book.

<HTML>
<HEAD><TITLE>Address Book</TITLE></HEAD>

<BODY>

<H1>Address Book</H1>
<P>Search for a Name:</P>

<FORM METHOD="GET" ACTION="/cgi-bin/addrform.pl">

First Name: <INPUT TYPE="text" NAME="first">

Last Name: <INPUT TYPE="text" NAME="last">

<INPUT TYPE="submit">
</FORM>

</BODY>
</HTML>

After a user clicks the Submit button on a form, the client browser URL Encodes and assembles user-input data into a query string that is appended to the ACTION URL specified in the <FORM> tag in the HTML document. If "John Smith" were entered in this form, the client would generate the URL with the following NAME=VALUE pairs:

/cgi-bin/addrform.pl?first=John&last=Smith

 first John last Smith
?NAME1=VALUE1&NAME2=VALUE2

The question mark demarcates the boundary between the name of the script, addrform.pl and the query information. The server parses this address and runs addrform.pl while providing the first=name&last=Smith in the QUERY_STRING Environment Variable.

NOTE: If the user fails to enter anything in text and password-entry fields, the field value is empty, but the field name still is appended to the URL query string as "fieldname=". Also note that disabled checkboxes are ignored entirely and are not appended as part of the query string.

Ordinary hyperlinks may also specify URLs which include a query string. This makes it possible to create hyperlinks whose action is action is equivalent to a user's filling out a form:

John Smith's address

To the address book script, input from a user's click on this hyperlink would be essentially indistinguishable from data which was manually entered into the form and submitted.

NOTE: When this URL is placed in HTML, the ampersands must be escaped as &, since the ampersand symbol has special meaning in HTML text.

CAUTION: As mentioned previously, GET is useful for very simple forms. However, GET has serious limitations on the amount of user-input data that can be transmitted from the browser to the server and subsequently to the CGI program. The amount of data that can be transferred typically is limited to ~1000 characters. This limitation can be especially constrictive for forms with multiple fields and Forms with <TEXTAREA> input objects. The amount of data, along with URL encoding, easily can surpass the limitations of GET, resulting in data being truncated while being passed. For this reason, POST is the preferred METHOD for Forms processing.

The POST Method
After a user clicks the Submit button on a form, the client browser URL Encodes user input in the same manner it does for GET; however, the data is not appended to the specified Action URL. The POST method uses the message body to send additional information from the user, rather than encoding it as part of the URL. The data is sent in a data block to the server as part of the POST operation. (A data block is simply a stream of data, of arbitrary length, passed to the CGI program.) In this case, the Action URL is the URL to which the data block is POSTed. A particular request to the server might look like this:

POST /addrform.pl HTTP/1.1
Referer: http://www.mycompany.com/docs/index.html
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0)
Accept: */*
Accept: image/gif
Accept: image/x-xbitmap
Accept: image/jpeg'
Content-type: application/x-www-form-urlencoded
Content-length: 21

first=John&last=Smith

The server now passes the encoded user data to the CGI program by Standard Input. Additionally, the CONTENT_LENGTH and CONTENT_TYPE Environment Variables are set for use by the CGI program. The Content-length of the NAME=VALUE pairs first=John&last=Smith is 21.

NOTE: you should be aware that when sending data to the CGI program using POST, the server is not required to send an End-of-File (EOF) character at the end of the data. You should use the Environment Variable CONTENT_LENGTH to determine how much data your CGI program needs to read from the Standard Input File Descriptor.

A script gets its stream of data from the transmission receive through the POST method. This stream is a collection of NAME=VALUE pairs for each Form variable on the Form. Here’s your first look at the CGI source code (it reads standard input into a memory buffer for the number of characters passed to the server from the client):

Get the Input
read(STDIN, $input, $ENV{‘CONTENT_LENGTH’});

Bottom of Form

formget.pl
#!/usr/local/bin/perl

$input = $ENV{QUERY_STRING};

@pairs = split(/&/, $input);

foreach $pair (@pairs) {
 ($name, $value) = split(/=/, $pair);
 $value =~ tr/+/ /; // translate a plus ("+") to a space (" ")
 $value =~ s/%([\dA-Fa-f]{2})/pack("C", hex($1))/eg; // ie, substitute (for %28
 $INPUT{$name} = $value; // %INPUT - Associative Array
}

print "Content-type: text/html\n\n";

print <<HTMLBody;
<HTML>
<HEAD><TITLE>Results from the Form</TITLE></HEAD>

<BODY bgColor="white">
<CENTER>

<H1>Results from the Form</H1>

Your name is $INPUT{name} and your email is $INPUT{email}

</CENTER>
</BODY>
</HTML>
HTMLBody

formpost.pl

#!/usr/local/bin/perl

read(STDIN, $input, $ENV{'CONTENT_LENGTH'});

NOTE: The rest of the script is identical to the “get” script.

form.pl

#!/usr/local/bin/perl

if ($ENV{'REQUEST_METHOD'} eq 'GET') {
 @pairs = split(/&/, $ENV{'QUERY_STRING'});
}
elsif ($ENV{'REQUEST_METHOD'} eq 'POST') {
 read (STDIN, $input, $ENV{'CONTENT_LENGTH'});
 @pairs = split(/&/, $input);
}

Where do I get my input from?
Let's take a look at the form that was used in the examples:

<FORM METHOD="GET" ACTION="formget.pl">
 Your Name: <INPUT TYPE="text" NAME="name">
 You Email: <INPUT TYPE="text" NAME="email">
 <INPUT TYPE="submit">
</FORM>

Now, you expect your CGI (formget.pl) to get the values for name and email somehow... but how? There are two answers to that question. That is because there are two METHODs to submit a <FORM>, POST and GET. In fact, the only difference between the two METHODs lies in the way that the input is given to the script. Here's what happens in each case:

1. GET
The input of a GET request is stored in a special Environmental Variable called QUERY_STRING. To access an Environmental Variable from your Perl script, you have to use the %ENV hash that Perl nicely provides. All you need to say is:

$input = $ENV{QUERY_STRING};

and the Form's data will be put to $input.

2. POST
The POST method does not put your input in some variable. Instead, the Webserver, upon executing your script will pass the CGI input to the script from STDIN (the STandarD INput). So, all you have to do is to read from the STDIN filehandle to get your input. The only tricky thing is that, an EOF (end-of-file) is not guaranteed at the end of the string. So how do you figure out how much you need to read? Not coincidentally, the server puts the length of the input string into an Environmental Variable, CONTENT_LENGTH. So you have to read CONTENT_LENGTH bytes from STDIN . The line that does this is:

read(STDIN, $input, $ENV{CONTENT_LENGTH});

An entire Form's information can be written in one simple line! Now try the following one-liner, that prints out to the browser the input string it got from the Form:

print "Content/type: text/html\n\n";

For various reasons that will not be discussed at the moment, CGI input comes in a, somewhat messy, Form, that has the fancy name URL Encoded. The general form is the following:

NAME1=VALUE1&NAME2=VALUE2&...&NAMEn=VALUEn
where, NAME1...NAMEn are the names (as in the name attribute of the <INPUT> tag in the HTML form) of the input fields and VALUE1...VALUEn are the corresponding values. What the user typed in or selected. In addition, the resulting string is encoded, by replacing all spaces (" ") with pluses (+)s and replacing certain other characters (like / and ~ and :) with hexadecimal ASCII codes (%2F and %7E and %3A) representing them. Now this looks very messy, but don't be scared, because with Perl it only takes a couple of lines to decode. So, let's see how it's done:

First of all you'll have to separate each NAME/VALUE pair from the rest. We use the split function to do that.

@pairs = split(/&/, $input);

The line above simple tells Perl to split up the input string on the & symbol (which is the separator of two pair in URL Encoded Form) and put the list of resulting NAME=VALUE pairs in the Array @pairs.

Then, we will have to take each of those pairs, separate the fieldname from the value, decode them, and store them in a hash (Associative Array) so that each fieldname is the key to its value.

foreach $pair (@pairs) {
 ($name, $value) = split(/=/, $pair);
 $value =~ tr/+/ /;
 $value =~ s/%([\dA-Fa-f]{2})/pack("C", hex($1))/eg;
 $INPUT{$name} = $value;
}

Now, what this does is pretty straightforward. We try each pair in turn, and if it is of the Form NAME=VALUE we store the fieldname and value in two separate variables. Then we replace all pluses (+)s with spaces (" ") and decode hexadecimal sequences. If you don't really follow the regular expressions, don't worry... you don't need to understand how they work, so long as you know how to use them - you will learn more with time if continue to study Perl. Finally, we put the value we get in an Associative Array with the relevant fieldname as a key.

So, now, all we need to do, is use the Associative Array %INPUT to access our Form's data. For example, the following lines:

print "Content-type: text/plain\n\n";

print "Your Name is $INPUT{name} and your Email is $INPUT{email}

will print to the browser, something like

Your Name is Frank Peter and your Email is frank@sislands.com

or the example form above.

That's basically all you need to know to get started. Trying things out and experimenting is your best bet at learning, so go on and try for yourself...

Display results using ASP v1

<% @ Language="JavaScript" %>

<HTML>
<HEAD><TITLE>Results from the Form</TITLE></HEAD>

<BODY>

<CENTER>

<H1>Results from the Form</H1>

Your Name is <% = Request("name") %> and your Email is <% = Request("email") %>

</CENTER>

</BODY>
</HTML>

Display results using ASP v1

Here we are telling ASP to make JavaScript the default language for this page
<% @ Language="JavaScript" %>

The Request Object retrieves the values that the client browser passed to the server during an HTTP request. This includes parameters passed from an HTML form using either the POST method or the GET method, cookies, and client certificates. The Request object also gives you access to binary data sent to the server, such as file uploads.

Below we are retrieving the entries in the "name" and "email" fields. Compare this with the Perl CGI script where we had to know if it was a GET or POST, and then have a routine to chop up and dice the information to finally arrive at the entries in the "name" and "email" fields.

********* ASP Version *********
Your Name is <% = Request("name") %> and your Email is <% = Request("email") %>.

********* Perl Version *********
Your Name is $INPUT{name} and your Email is $INPUT{email}.

Display results using ASP v2

<H1>Results from the Form</H1>

Your Name is <% Response.write(Request("name")) %> and
your Email is <% Response.write(Request("email")) %>

CGI Environmental Variables

Much of the information needed by CGI programs is made available via Environment Variables. Environment Variables are used to pass data about the CGI request from the server to the script. The representation of the characters in the Environment Variables is system defined. They are accessed by the script in a system dependent manner. Programs can access this information as they would any Environment Variable (e.g., via the %ENV associative array in Perl). A missing Environment Variable is equivalent to a zero-length (NULL) value, and vice versa.

Environment Variable names are case-insensitive; i.e. there cannot be two different variable whose names differ in case only. The table below lists the Environment Variables commonly available through CGI. Here they are shown using a canonical representation of capitals plus underscore ("_"). The actual representation of the names is system defined; for a particular system the representation may be defined differently to this. Check with your own server documentation for more information.

ENVIRONMENT VARIABLES
	VARIABLE
	DESCRIPTION

	AUTH_TYPE
	The authentication method the server uses when a client requests a protected script

	CONTENT_LENGTH
	The length of the content as sent by the client

	CONTENT_TYPE
	Type of content that was sent to the server. Returned as MIME types

	DATE_GMT
	The current system date in Greenwich Mean Time

	DATE_LOCAL
	The current system date in the local time zone

	GATEWAY_INTERFACE
	The current CGI revision level that is supported by the host server

	HTTP_[header name]
	All of the HTTP header information that will appear in a comma separated list

	HTTP_ACCEPT
	The MIME types that the browser can accept

	HTTP_ACCEPT_AGENT
	The languages that the browser can accept

	HTTP_REFERER
	The URL of the page that referred the client to the document on your site

	LAST_MODIFIED
	The date the document was last modified

	LOGON_USER
	The account the user is logged into. Only set when accessing protected scripts

	PATH_INFO
	Additional information about the document path, returned with a virtual path name

	PATH_TRANSLATED
	PATH_INFO with the virtual path mapped to the directory path

	QUERY_STRING
	The information which follows the ? in the URL which referenced this script. It should not be decoded in any fashion.

	REMOTE_ADDR
	Client's IP Address

	REMOTE_HOST
	Name of the host corresponding to REMOTE_ADDR. If this isn't available to the server, it is left empty

	REMOTE_IDENT
	If the HTTP server supports RFC 931 identification, then this variable will be set to the remote user name retrieved from the server.

	REMOTE_USER
	If the server supports user authentication, and the script is protected, this is the username they have authenticated as.

	REQUEST_METHOD
	Method the request was made with. Most common methods are GET and POST.

	SCRIPT_NAME
	Virtual path to the script being executed. Use it to create self-referencing forms or for creating "Go back" links for scripts that can be accessed from different pages

	SERVER_NAME
	Server name as used in the URL. Can be a hostname, IP Address, or DNS alias.

	SERVER_PORT
	Port number which the request was sent

	SERVER_PORT_SECURE
	Values of 0 or 1, depending on whether this request was made on a secured port (1) or not (0)

	SERVRE_PROTOCOL
	The name and revision of the information protocol this request came in with.

	SERVER_SOFTWARE
	The name and version of the information server software answering the request (and running the gateway). Format: name/version. Server software, for example "Microsoft-IIS/3.0"

	URL
	Base portion of the URL

Sample Script
Here's a simple Perl CGI script that uses Environment Variables to display various information about the server:

#!/usr/local/bin/perl

print "Content-type: text/html", "\n\n";

print "<HTML>", "\n";

print "<HEAD><TITLE>About this Server</TITLE></HEAD>", "\n";

print "<BODY><H1>About this Server</H1>", "\n";

print "<HR><PRE>";

print "Server Name: ", $ENV{'SERVER_NAME'}, "
", "\n";

print "Running on Port: ", $ENV{'SERVER_PORT'}, "
", "\n";

print "Server Software: ", $ENV{'SERVER_SOFTWARE'}, "
", "\n";

print "Server Protocol: ", $ENV{'SERVER_PROTOCOL'}, "
", "\n";

print "CGI Revision: ", $ENV{'GATEWAY_INTERFACE'}, "
", "\n";

print "<HR></PRE>", "\n";

print "</BODY></HTML>", "\n";

exit (0);

The preceding program outputs the contents of five Environment Variables into an HTML document. In Perl, you can access the Environment Variables using the %ENV associative array. Here's a typical output of the program:

Sample Script Output
<HTML>

<HEAD><TITLE>About this Server</TITLE></HEAD>

<BODY>

<H1>About this Server</H1>

<HR><PRE>

Server Name: bermuda

Running on Port: 80

Server Software: Microsoft-IIS/4.0

Server Protocol: HTTP/1.1

CGI Revision: CGI/1.1

</PRE><HR>

</BODY>

</HTML>

Internet Explorer Additional Headers

Internet Explorer sends additional headers to your server that aren't supported by Netscape Browsers. These additional headers deal with the capabilities of each client' computer.

	HEADER
	DESCRIPTION

	HTTP_UA_COLOR
	The color palate of the browser display

	HTTP_UA_CPU
	Returns the CPU type of the client's computer, for example, "x86" for all Intel compatible computers. You can use this information to decide which ActiveX control packages to send to this computer (Intel, Mac, Alpha, or Mips version).

	HTTP_UA_OS
	The operating system of the client browser

	HTTP_UA_PIXELS
	The resolution of the client browser display

The PATH_TRANSLATED

When a Web Browser makes an HTTP request to a Web Server, the URL of the request is stored with all the other server variables. The server then translates this URL, which is a virtual web path, to a physical file path containing the actual location of the file on the Web Server. This value is stored in the Server Variables collection as PATH_TRANSLATED.

For example:
	URL Request
	http://MyServer/Files/ShowDir.asp

	PATH_INFO
	/Files/ShowDir.asp

	PATH_TRANSLATED
	C:\inetpub\wwwroot\testserver\files\ShowDir.asp

So we need to retrieve this information from the Web Server, and write it to the response. To be able to access the server variables, we first need to be able to reference the Request object. Once we have determined the value of PATH_TRANSLATED, we can output that information to the response. In order to do this, we need to be also able to reference the Response object.

URL Encoding

Before data supplied on a form can be sent to a CGI program, each form element's name (specified by the NAME attribute) is equated with the value entered by the user to create a NAME=VALUE pair. For example, if the user entered "30" when asked for his or her age, the NAME=VALUE pair would be "age=30". In the transferred data, NAME=VALUE pairs are separated by the ampersand (&) character.

Since under the GET Method the Form information is sent as part of the URL, form information cannot include any spaces or other special characters that are not allowed in URLs, or characters that have other meanings in URLs, like slashes (/). (For the sake of consistency, this constraint also exists when the POST method is being used.) Therefore, the Web browser performs some special encoding on user-supplied information.
URL Encoding involves replacing spaces and other special characters in the query strings with their hexadecimal equivalents. (Thus, URL Encoding is also sometimes called hexadecimal encoding.) Suppose a user fills out and submits a form containing his or her birthday in the syntax mm/dd/yy (e.g., 11/05/73). The forward slashes in the birthday are among the special characters that can't appear in the client's request for the CGI program. Thus, when the browser issues the request, it encodes the data. The following sample request shows the resulting encoding:

POST /cgi-bin/birthday.pl HTTP/1.0

.

. [information]

.

Content-length: 21

birthday=11%2F05%2F73

The sequence %2F is actually the hexadecimal equivalent of the slash (/) character.

CGI scripts have to provide some way to "decode" Form data the client has encoded. Here's a short CGI program, written in Perl, that can process this Form:

#!/usr/local/bin/perl

read(STDIN, $input, $ENV{'CONTENT_LENGTH'});

$input =~ s/%([\dA-Fa-f]{2})/pack("C", hex($1))/eg;

($field_name, $birthday) = split(/&/, $input);

print "Content-type: text/plain", "\n\n";

print "Hey, your birthday is on: $birthday.";

print "That's what you told me, right?", "\n";

exit (0);

The line:

$input =~ s/%([\dA-Fa-f][\dA-Fa-f])/pack ("C", hex ($1))/eg;

is a regular expression in Perl that converts the hex "%2F" back to a "/" character. This should look somewhat familiar, because this topic was superficially covered in Week 5 in the Introduction to JavaScript RegExp.

NOTE: As a special case, the space character can be encoded as a plus sign (+) in addition to its hexadecimal notation (%20). By using %20 instead of '+' URL Encoding is 100% compatible to JavaScript's escape() function.

URL Encoding Character Translations
	ANSI
	Latin-1
	Hex

	!
	33
	%21

	"
	34
	%22

	#
	35
	%23

	$
	36
	%24

	%
	37
	%25

	&
	38
	%26

	'
	39
	%27

	(
	40
	%28

)
	41
	%29

	*
	42
	%2A

	+
	43
	%2B

	,
	44
	%2B

	-
	45
	%2D

	.
	46
	%2E

	/
	47
	%2F

	:
	58
	%3A

	;
	59
	%3B

	
	ANSI
Latin-1
Hex
<
60
%3C
=
61
%3D
>
62
%3E
?
63
%3F
@
64
%40
[
91
%5B
\
92
%5C
]
93
%5D
^
94
%5E
_
95
%5F
`
96
%60
{
123
%7B
|
124
%7C
}
125
%7D
~
126
%7E
&127;
127
%7F

URL Encoding & Decoding
Suppose you have a message and it says:

Some+website+you+got%21
%0D%0AGood+luck%28you%27ll+need+it%29
%0D%0A7E%7E+The+Slug+%7E%7E

What The Slug is trying to say is:

Some website you got!
Good luck (you'll need it)
~~ The Slug ~~

The string above is called URL Encoding, a scheme in which text data transmitted to web servers is encoded by replacing spaces (" ") with plus signs ("+") and non alpha numeric characters are replaced by their ASCII equivalents.

So, how do I convert this stuff? You could do a search and replace with an ASCII chart and tediously replace the plus signs ("+") with spaces (" ") and the ASCII representations (like %21) with their non-alphanumeric counterparts (like "!"). Or you could change the ENCTYPE property of your <FORM> Object. The default encoding type is "text/urlencoded", which sends URL Encoded text to the server. Change ENCTYPE to "text/plain" and that's exactly what you get - plain text that doesn't have to be decoded. Still, it's good to know how to decode URL Encoded text and one of the simplest ways is to use JavaScript to write a simple Encoder/Decoder.

It's almost trivially simple to URL Encode text because JavaScript has two functions:

· escape() and

· unescape()

which translate text into ASCII and ASCII into text. For example, with unescape() you can convert the ASCII representations to their non alphanumeric equivalents, all that's left is to replace the plus signs ("+") with spaces (" "). Here are two simple URL Decoding scripts:

	Using String charAt()
	Using RegExp - Search & Replace

	function decode(str) {
 var result = "";

 for (var i = 0; i < str.length; i++) {
 if (str.charAt(i) == "+") result += " ";
 else result += str.charAt(i);

 return unescape(result);
 }
}
	function decode(str) {
 return unescape(str.replace(/\+/g, " ");
}

Type a message into the text box below and click Encode. The script URL Encodes your message just like your web server would and the results appear in the lower text box. Now just click Decode and a script similar to the one above Decode your message back into it's original form.

[image: image22.wmf]

Some website you got!

Good luck (you'll need it)

~~ The Slug ~~

[image: image23.wmf]Encode

[image: image24.wmf]

Some+website+you+got%21%0D%0A

Good+luck+%28you%27ll+need+it%29%0D%0A

%7E%7E+The+Slug+%7E%7E

[image: image25.wmf]Decode

Mailto -vs- CGI

A few things that need to be clarified first:

What are no CGI Forms and how do they work?

No CGI Forms use the customer's Mail Application to send in the information from an Online Form. Also called "mailto forms", they have an action similar to this:

ACTION="mailto:frank@sislands.com?subject=JavaScript"

Problems:

· Assuming that the customer is on her or his computer:
As long as the client has everything set up correctly, this strategy works great.
It takes all the information from the Form and dumps it into the body of the email.

· Assuming that the customer is not on her or his computer:
1) The Mail Application might not be setup.
2) If the Mail Application is setup - The information doesn't match the customer.

Forms and CGI and How it Work?

For the purposes of our discussion here, server-side "scripts" are triggered when they receive Form input from a web page. All the processing is done on the server as opposed to JavaScript which is entirely a client-side language. Right now you can probably see one blaring advantage of server-side languages over client-side languages. Server-side languages do not have to take into account running on the Heinz 57 varieties of browsers that are available. Once the "script" is set up on your server, it is there for good.

Which is better: mailto Forms or CGI?

Clearly CGI is the way to go as long as you have CGI privileges.

Passing Data

Top of Form

[image: image26.wmf]

<font color="blue" f

 HTMLCONTROL Forms.HTML:Hidden.1 [image: image27.wmf]

<img src="images

 HTMLCONTROL Forms.HTML:Hidden.1 [image: image28.wmf]

<img src="images

Bottom of Form

View specs for which product?

· Product 1

· Product 2

[image: image1.wmf]

0

Passing Data

Top of Form

[image: image29.wmf]

<font color="blue" f

 HTMLCONTROL Forms.HTML:Hidden.1 [image: image30.wmf]

<img src="images

 HTMLCONTROL Forms.HTML:Hidden.1 [image: image31.wmf]

<img src="images

Bottom of Form

Product 1 Name

Product information for product 1 goes here. Elderly man not included. There are lots of neat things that product 1 can do. Its specs can fill up lots of space. What a great product!!!

[image: image35.png]

Passing Data

Top of Form

[image: image32.wmf]

<font color="blue" f

 HTMLCONTROL Forms.HTML:Hidden.1 [image: image33.wmf]

<img src="images

 HTMLCONTROL Forms.HTML:Hidden.1 [image: image34.wmf]

<img src="images

Bottom of Form

Product 2 Name

Product information for product 2 goes here. What a great computer it is! There are lots of neeto things that product 2 can do. Its specs can fill up lots of space. What a great product!!!
Passing Data

<HTML>
<BODY>

<!--
If you want it to display info for product1 (defined in "product1" hidden form element below, you need to call the URL: titleofthisdoc.htm?product1
NOTE: You should have a hidden form element called "default_info" defined below in case the specified URL extension is invalid.
-->

<FORM NAME="multi">

<INPUT
TYPE="hidden"
NAME="default_info"
VALUE=
'
View specs for which product?

Product 1
Product 2
'>

<INPUT
TYPE="hidden"
NAME="product1"
VALUE=
'

Product 1 Name

Product information for Product 1 goes here. Elderly man not included. There are lots of neat things that product 1 can do. Its specs can fill up lots of space. What a great product!!!'>

<INPUT
TYPE="hidden"
NAME="product2"
VALUE=
'

Product 2 Name

Product information for Product 2 goes here. What a great computer it is! There are lots of neat things that product 2 can do. Its specs can fill up lots of space. What a great product!!!'>

</FORM>

<SCRIPT>

// location.search specifies the query portion of the current URL,
// including the leading question mark.
// For example, multiurl.htm?product1
// the search portion of location would be ?product1

var query = location.search;
var showProd = false; // use this as a flag or switch
var form = document.multi; // creating a shortcut

query = query.substring(1, query.length); // we want to start after the ?

if (query.length > 0) showProd = eval("form." + query);

// write specified product info, remember that the value is the "entire page"
// checkout the various values again to make sure that you understand what they represent
if (showProd) document.write(showProd.value);
else document.write(document.multi.default_info.value); // write default page

</SCRIPT>

</BODY>
</HTML>

CALENDAR

<HTML>
<HEAD>
<TITLE>Calendar</TITLE>

<SCRIPT>

/********** DECLARE ARRAYS & DATE OBJECT **********/

var dayName = new Array ("Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday");
var monthName = new Array ("January", "February", "March", "April", "May", "June",

 "July", "August", "September", "October", "November",

 "December");

var Month30 = new Array(3, 5, 8, 10); // months containing 30 days
var Month31 = new Array(0, 2, 4, 6, 7, 9, 11); // months containing 31 days

var now = new Date();

/********** END OF DECLARE ARRAYS & DATE OBJECT **********/

/********** PARSE SEARCH STRING **********/
// search string equals, ie, ?Month=1&Year=2000;
var amp = location.search.indexOf("&"); // & separates Month from Year

// if search exists then pull out the Month else get current Month
// pull out the string between ?Month= and & => giving us 1 - the Month
var Month = (location.search.substring(1)) ? parseInt(location.search.substring(7, amp)) - 1 :
 now.getMonth();

// if search exists then pull out the Year else get current Year
// pull out the string between &Year= and the end of the string => giving us 2000 - the Year
var Year = (location.search.substring(1)) ? parseInt(location.search.substring(amp + 6)) :
 now.getYear();

/********** END OF PARSE SEARCH STRING **********/
/********** GET FIRST DAY OF MONTH **********/

var strDate = new Date(Year, Month, 1); // set Date for the 1st of the selected Month

var firstDay = strDate.getDay(); // get the Date of the 1st Day of the selected Month

/********** END OF GET FIRST DAY OF MONTH **********/

/********** GET THE NUMBER OF DAYS IN THE MONTH **********/

function getDaysInMonth(Year, Month) {
 if (Month == 1) {
 // if February and Leap Year return 29 else 28
 if (((Year % 4 == 0) && (Year % 100 != 0)) || (Year % 400 == 0)) return 29;
 else return 28;
 }

 for (month in Month30) {
 if (Month == Month30[month]) return 30;
 }

 // Checking to see if the Month has 31 days
 for (month in Month31) {
 if (Month == Month31[month]) return 31;
 }
}

var daysInMonth = getDaysInMonth(Year, Month);

/********** END OF GET THE NUMBER OF DAYS IN THE MONTH **********/

</SCRIPT>

</HEAD>

<BODY>

<SCRIPT>

// variables to be used for the arrows
var monthL, monthR;
var yearL = yearR = Year;

document.write('<H2>');

/********** LEFT ARROW **********/
// if Month <= 0 then we are going from Jan to Dec & the Year is one year less
if (Month <= 0) {
 monthL = 12;
 yearL = Year - 1;
}
else monthL = Month;

// create left linked arrow, ie, calendar.htm?Month=12&Year=1999
document.write('<A HREF="calendar.htm?Month=' +

 monthL + '&Year=' + yearL + '">');
document.write('');
document.write('');

/********** END OF LEFT ARROW **********/
/********** WRITE OUT MONTH & YEAR **********/

document.write(' '); // 2 spaces between Left Arrow & Month and Year
document.write(monthName[Month] + " " + Year); // write Month & Year
document.write(' '); // 2 spaces between Right Arrow & Month and Year

/********** END OF WRITE OUT MONTH & YEAR **********/

/********** RIGHT ARROW **********/
// if Month >= 0 then we are going from Dec to Jan & the Year is one year more
if (Month >= 11) {
 monthR = 1;
 yearR = Year + 1;
}
else monthR = Month + 2;

// create right linked arrow, ie, calendar.htm?Month=2&Year=2000
document.write('');
document.write('');
document.write('');

/********** END OF RIGHT ARROW **********/
document.write('<H2>');

</SCRIPT>

<TABLE>
 <TR>

<SCRIPT>

/********** TABLE HEADER **********/

// Create Table Headers (Sunday, Monday, etc..., Saturday)
for (i = 0; i < 7; i++) {
 document.write('<TH>' + dayName[i] + '</TH>');
}

document.write("</TR><TR>");

/********** END OF TABLE HEADER **********/

/********** BODY OF THE TABLE **********/

var column = firstDay; // first day of the Month
var Day = 1;

// fill up the Beginning of the Month of to the 1st of the Month with Blank Cells
for (i = 0; i < firstDay; i++) {
 document.write('<TD> </TD>'); // creates an empty cell
}

for (i = 0; i < daysInMonth;) {
 // if column doesn't equal 7 then create the column
 // else begin a new row
 if (column++ != 7) {
 // if the column day happens to be today then make that column number blue to indicate today
 // else create a "normal" column
 if (now.getMonth() == Month && now.getDate() == Day && now.getYear() == Year)
 document.write('<TD>' + Day++ + "</TD>");
 else document.write('<TD>' + Day++ + "</TD>");
 i++;
 }
 else {
 document.write("</TR><TR>");
 column = 0;
 }
 }
}

 // fill up the End of the Month after the Last of the Month with Blank Cells
if (column != 0 && column < 7) {
 for (i = column; i < 7; i++) {
 document.write('<TD> </TD>'); // creates an empty cell
 }
}

/********** END OF BODY OF THE TABLE **********/

</SCRIPT>

 </TR>
</TABLE>

</CENTER>

</BODY>
</HTML>

JMail
Examples & Implementations

Let's start with working examples of three commonly used features:

· feedback form

· "recommend to a friend" feature

· An Example on the Microsoft FrontPage Site

· 404 error reporter

The main function in the implementation of these three features is sending email from the ASP script. There are no built-in capabilities to send email from ASP, but there are lots of free and commercial components enabling you to do this. In this article, I'll use the JMail component available for free from http://www.dimac.net/. You may use any other component available on your host; it shouldn't be difficult to adapt these examples to work on your site.

Feedback Form

One of the most important elements of a great site is the ability to satisfy user needs, and the easiest way to know what your users need and want is by getting their feedback. From my own experience, I know that simply displaying your contact information doesn't guarantee much feedback. There are a variety of reasons why people might not send you email even if they want to tell you something: they're not browsing your site from their own computer; they don't have their email software properly configured; an email message tends to require some formal things like greetings and more; they don't want to give you their email but still have something important to say... Having a feedback form solves most of these problems, enabling you to get more information from your users and build a better site.

Implementation of feedback form in ASP is quite easy:

· create HTML form,

· get fields, and

· send email.

So let's start by creating basic HTML form (formatting skipped):

<FORM METHOD="POST" ACTION="jmail.asp">
 Name:<INPUT TYPE="TEXT" NAME="fromname">

 Email:<INPUT TYPE="TEXT" NAME="fromaddr">

 Subject:<INPUT TYPE="TEXT" NAME="subject">

 Message:<TEXTAREA NAME="body"></TEXTAREA>

 <INPUT TYPE="SUBMIT" VALUE="Send">
 <INPUT TYPE="RESET" VALUE="Clear">
</FORM>

And now we will get the fields from that form and send them to our email:

<%
Set jmail = Server.CreateObject("jmail.smtpmail");
jmail.ServerAddress = "mail.company.com";
jmail.AddRecipient("webmaster@company.com");
jmail.Sender = Request.Form("fromaddr");
jmail.SenderName = Request.Form("fromname");
jmail.Subject = Request.Form("subject");
jmail.Body = Request.Form("body");
jmail.Execute;
%>

This is the simplest implementation of a feedback form. You may use it on your site as is. However, I would recommend customizing it to be more universal. You can make the form accept not only the name and email of the sender, subject and body, but also allow a choice of email address of the recipient (you) so you may use it from various parts of your site or on various sites. In this manner, you will be able to add a select box (dropdown) to your HTML form, so your visitor may choose the theme of the message and send the message to a specific responsible person. To be even more universal, you may want the script to redirect to a specific "thank you" page after processing.

Now our HTML form will look something like this:

<FORM METHOD="POST" ACTION="jmail.asp">
 <INPUT TYPE="HIDDEN" NAME="redir" VALUE="/index.html">
 Name:<INPUT TYPE="TEXT" NAME="fromname">

 Email:<INPUT TYPE="TEXT" NAME="fromaddr">

 Theme:
 <SELECT NAME="toaddr">
 <OPTION VALUE="sales@company.com">Product sales
 <OPTION VALUE="webmaster@company.com">Bugs, dead links, etc.
 </SELECT>

 Subject: <INPUT TYPE="TEXT" NAME="subject"

 Message:<TEXTAREA NAME="body"></TEXTAREA>

 <INPUT TYPE="SUBMIT" VALUE="Send">
 <INPUT TYPE="RESET" VALUE="Clear">
</FORM>

And the processing script:

<%
Set jmail = Server.CreateObject("jmail.smtpmail");
jmail.ServerAddress = "mail.company.com";
jmail.AddRecipient(Request.Form("toaddr"));
jmail.Sender = Request.Form("fromaddr");
jmail.SenderName = Request.Form("fromname");
jmail.Subject = Request.Form("subject");
jmail.Body = Request.Form("body");
jmail.Execute;
Response.Redirect(Request.Form("redir"));
%>

Note: Response.Redirect should be used before any content has been passed to the client.

Recommend To a Friend

So you've managed to build a really useful site. Now you need to start building traffic. One of the most powerful ways of attracting new visitors is a recommendation from someone they know and trust - a friend. But no matter how good your site is, people are often still too hurried (or lazy) to start their mailer and send some recommendations to their friends. This is where the "Recommend To a Friend" feature comes into the game. This feature allows your satisfied visitor to recommend your site to a friend without having to do something extraordinary and without leaving your site. He/she just fills in his/her name and email address, name and email address of the friend and click a button.

The implementation of this feature is not much different from the implementation of the feedback form. Just collect the needed information and send the email.

<FORM METHOD="POST" ACTION="recommend.asp">
 Your name:<INPUT TYPE="TEXT" NAME="fromname">

 Your email:<INPUT TYPE="TEXT" NAME="fromaddr">

 Friends name:<INPUT TYPE="TEXT" NAME="toname">

 Friends email:<INPUT TYPE="TEXT" NAME="toaddr">

 <INPUT TYPE="SUBMIT" VALUE="Send"><INPUT TYPE="RESET" VALUE="Clear">
</FORM>

And the processing script (recommend.asp):

<%
Set jmail = Server.CreateObject("jmail.smtpmail");
jmail.ServerAddress = "mail.company.com";
jmail.AddRecipient(Request.Form("toaddr"),Request.Form("toname"));
jmail.Sender = Request.Form("fromaddr");
jmail.SenderName = Request.Form("fromname");
jmail.Body="Dear " & Request.Form("toname") + \n\n
Request.Form("fromname") + " recommends you to visit " +
"Company site at http://www.company.com/. " +
"We have lots of useful information.";
jmail.Execute;
%>

You may want to allow for additional text to be added by the visitor, but weigh the fact that this could potentially be used to send inappropriate mail from your Web site.

404 Error Reporter

So things are starting to get rolling - your site has some traffic, you've submitted to lots of search engine and indexes, and there are finally other sites linking to yours. Inevitably, there will be some bad links among those. When a browser requests a non-existent page from your Web server, it receives 404 "page not found" error in response. Many servers can be configured to display a customized error page to be shown to your wayward visitor. You may use this page to let the visitor know that the page he requested doesn't exist and ask him to report the problem to the Webmaster of the site he came from. Now, how many of the visitors will actually do that? I would guess that the number is not much greater than 0.

You can analyze your logs to find out where are the bad requests coming from, but when you have a high-traffic site, downloading and analyzing logs can be a big pain. The easiest and fastest way is to make the error page to send you email with referrer and error information. To accomplish this, just add few lines of code to your custom 404 page (assuming that this page can include ASP):

<%
Set jmail = Server.CreateObject("jmail.smtpmail");
jmail.ServerAddress = "mail.company.com";
jmail.AddRecipient("webmaster@company.com");
jmail.Sender = "badlinkreporter@company.com";
jmail.Subject = "Bad Link Report";
jmail.Body = "Bad link to our site at " +
Request.ServerVariables("HTTP_REFERER");
jmail.Execute;
%>

Conclusion

By adding the features described above, you can spice up your site and make it more powerful. It's important to remember, however, that it's not the latest and greatest bells and whistles make your site sell but high quality content. So while adding new tools and features to your site, don't forget about creating new interesting content - it's the main reason why users visit for the first time and why they return later.

37

_1041938667.unknown

_1041938673.unknown

_1041938675.unknown

_1041938676.unknown

_1041938674.unknown

_1041938670.unknown

_1041938671.unknown

_1041938669.unknown

_1041938657.unknown

_1041938662.unknown

_1041938665.unknown

_1041938666.unknown

_1041938663.unknown

_1041938659.unknown

_1041938661.unknown

_1041938658.unknown

_1041938646.unknown

_1041938651.unknown

_1041938654.unknown

_1041938656.unknown

_1041938653.unknown

_1041938648.unknown

_1041938650.unknown

_1041938647.unknown

_1041938640.unknown

_1041938643.unknown

_1041938644.unknown

_1041938642.unknown

_1041938637.unknown

_1041938639.unknown

_1041938635.unknown

_1041938636.unknown

_1041938633.unknown

