Techniques for text String Management

When you load a text string into a Variable, the Variable automatically gains certain Methods which you can use to make changes to the text. These are called string Methods.

charAt()

A good example of this is the charAt() Method, which tells you what letter (or "character") is at a given position in the text string. The term "position" refers to its numerical position in the sequence of text, and as usual, you start counting with 0. That means the first letter in a text string is at position 0. Here's how you use the charAt() Method:

var charAtStr = prompt("Please enter a sentence:", "Let's see what happens!");
var pos = prompt("Please enter the character position you are looking for:", 10);

alert('"' + charAtStr + '".charAt(' + pos + ') = ' + charAtStr.charAt(pos));

Top of Form

Bottom of Form

As with all of the text string Methods discussed in this section, the charAt() Method takes an argument and returns a value. In this case, the argument is a number position and the returned value is the character in the text string that is at that position.

indexOf()

The indexOf() Method works like the charAt() Method in reverse. It takes a small text string as an argument and returns a number indicating the position of the small text string within a bigger text string. If the small text string is not present in the bigger text string, the indexOf() Function returns the number -1.

var indexOfStr = prompt("Please enter a sentence:", "Let's see what happens!");
var str = prompt("Please enter the search string you are looking for:", "at");
var start = prompt("Where do you want to start?", 0)

alert('"' + indexOfStr + '".indexOf(' + str + ') = ' + indexOfStr.indexOf(str, start));

Top of Form

Bottom of Form

substring()

With the substring() Method, you can select and extract chunks of text based on their numerical positions within larger text strings.

var subStr = prompt("Please enter a sentence:", "Let's see what happens!");
var start = prompt("Where do you want to start?", 6)
var end = prompt("Where do you want to end?", 11)

alert('"' + subStr + '".substring(' + start + ", " + end + ') = ' +  
          subStr.substring(start, end));

Top of Form

Bottom of Form

How to use string Methods
Suppose you want pull some information off of a form on a Web page. In this case it's a phone number and people often put their area code in with their phone number, even though there is a separate entry on the form for that. Here's a Function that will separate the area code from the phone number. (Note that we are detecting the area code by searching for the "(" character. This may add some confusion when you look at this since we use a lot of parentheses in the Function already.):

function checkNumber(num) {
      var phone, areaCode = "No Area Code";

      if (num.indexOf("(") ! = -1) {
            areaCode = num.substring(num.indexOf("(") + 1, num.indexOf(")"));
            phone = num.substring(num.indexOf(")") + 1, num.length);
      }

      alert("Area Code = " + areaCode + " Phone Number = " + phone + ".")
}

Top of Form

Bottom of Form

In order to keep this example simple, it doesn't perform multiple tests. For instance, this script could also have detected area codes written in the following formats: 123-456-7890, or 123.456.7890, by using other combinations of string Methods.

Message Slideshow

A form box message slideshow rotates among any number of messages. Each message is associated with a unique URL, and clicking the button will take the surfer to a different URL, depending on when the surfer clicks it.

<SCRIPT> 

var curmsg = -1;

var messages = new Array();

messages[0] = "Check out CNN, one of the premier news site on the net, covering national international, sports, and wheather news!";
messages[1] = "Visit Wired.com for the latest happenings in the technology sector.";
messages[2] = "Go to download.com to download the latest shareware and demo programs!";

var msgLinks = new Array();

msgLinks[0] = "http://www.cnn.com";
msgLinks[1] = "http://www.wired.com";
msgLinks[2] = "http://www.download.com";

function slidemessage() {
     if (curmsg < messages.length - 1) curmsg++;
     else curmsg = 0;

     document.slideshow[0].value = messages[curmsg];

     setTimeout("slidemessage()", 4500);
}

</SCRIPT>

<BODY onLoad="slidemessage()">

<FORM NAME="slideshow">
     What's On Update
     <TEXTAREA></TEXTAREA>
     <INPUT TYPE="button" VALUE="Take me there!"  
       onClick="location.href=msgLinks[curmsg]">
</FORM>

Message Slideshow

<SCRIPT> 

// initialize to -1 because it immediately gets set to 0 by the slidemessage()
// this then brings up message 0
// curmsg is also a Global variable that is used by the Take me there! button at the bottom
var curmsg = -1;

// create the message array
var messages = new Array();

//add more messages as desired
messages[0] = "Check out CNN, one of the premier news site on the net, covering national international, sports, and wheather news!";
messages[1] = "Visit Wired.com for the latest happenings in the technology sector.";
messages[2] = "Go to download.com to download the latest shareware and demo programs!";

// create the links array
var msgLinks = new Array();

msgLinks[0] = "http://www.cnn.com";
msgLinks[1] = "http://www.wired.com";
msgLinks[2] = "http://www.download.com";

function slidemessage() {
     // the array index (curmsg) can only goes from 0 to 2 (messages.length - 1)
     // if curmsg greater than the 2 reset the counter back to 0 & start the cycle over again
     if (curmsg < messages.length - 1) curmsg++;
     else curmsg = 0;

     // put the new message into the TextArea
     document.slideshow[0].value = messages[curmsg];

     // waiting time is set to 4.5 seconds before you call slidemessage()
     setTimeout("slideshow()", 4500);
}

</SCRIPT>

after the document is loaded call the slidemessage() function
<BODY onLoad="slidemessage()">

<FORM NAME="slideshow">
     What's On Update
     <TEXTAREA></TEXTAREA>
onClick you are taken to the link associated with that particular message
     <INPUT TYPE="button" VALUE="Take me there!" 
       onClick="location.href=msgLinks[curmsg]">
</FORM>

Demo of document.write() & "how" it works

The two examples below, hopefully, illustrate some of the issues associated with document.write(). 

<BODY onLoad="somefunction()"> tells the browser to run the function after the document is already loaded. When the onLoad Event Handler is invoked, you can be certain that the document is fully loaded, and therefore that all scripts within the document have executed, all functions within the scripts are defined, and all forms and other document elements have been parsed and are available through the Document Object.

Understanding the sequencing of how a browser interprets statements is important. The browser always starts at the top and starts to parse (or interpret) the lines, line by line. Where we can get in trouble is when we refer to "something" before it exist. One way to solve this problem is to use the onLoad within the <BODY> tag, this insures us that when we refer to "something" - we know that it already exist.

The second example demonstrates some of the problems of using document.write(). First, the page gets loaded, this means that document's visible items are displayed and the document's "invisible" items are stored in memory ready for use. When getName() gets called it initiates 3 steps:

· prompts the user for their name 

· puts their name into the text field 

· then document.write() overwrites the entire document with the following:

<H2><CENTER><FONT COLOR="navy">
Frank, try a variation of this page for yourself.
</FONT></CENTER></H2> 

If you view the source within the IE 4.x or greater all you see is:

<H2><CENTER><FONT COLOR="navy">
Frank, try a variation of this page for yourself.
</FONT></CENTER></H2>

So the punchline is -- Think through the sequencing of all your code.

Welcome to the World of JavaScript!!

Top of Form

[image: image1.wmf]

Hi Frank!!


Bottom of Form

Frank, try a variation of this page for yourself.
<FORM NAME="LittleForm">
     <INPUT TYPE="text" NAME="yourname">
</FORM> 

<SCRIPT>

var inputname = prompt("Please Enter your name: ", "Frank");

document.LittleForm.yourname.value = "Hi "+ inputname +"!!";
// OR document.LittleForm[0].value = "Hi "+ inputname +"!!";
// OR document.LittleForm.elements[0].value = "Hi "+ inputname +"!!";
document.write('<H2><CENTER><FONT COLOR="navy">');
document.write(inputname + ", try a variation of this page for yourself.");
document.write("</FONT></CENTER></H2>");

</SCRIPT>

Welcome to the World of JavaScript!!

Top of Form

[image: image2.wmf]


Bottom of Form

<SCRIPT> 

function getName() {
     var inputname = prompt("Please Enter your name: ", "Frank");

     document.LittleForm.yourname.value = "Hi "+ inputname +"!!";

     document.write('<H2><CENTER><FONT COLOR="navy">');
     document.write(inputname + ", try a variation of this page for yourself.");
     document.write("</FONT></CENTER></H2>");
}

</SCRIPT>

<FORM NAME="LittleForm">
     <INPUT TYPE="text" NAME="yourname">
     <INPUT TYPE="button" VALUE="Get Name" onClick="getName()">
</FORM>

Form Object
By using the form you have at your disposal information about the elements in a form and their values. You can alter many of these of these values as needed.

A separate instance of the form object is created for each form in a document. Objects within a form can be referred to by a numeric index or be referred to by name.

<FORM
     [NAME="formName"]
     [TARGET="frameName or windowName"]
     [ACTION="CGI path"]
     [METHOD="GET | POST"]
     [ENCTYPE="MIMEType"]
     [onSubmit="handlerText Or Function"]
     [onReset="handlerText Or Function"]>
</FORM>

Properties of the Form Object
	PROPERTY
	DESCRIPTION

	ACTION
	String containing the value of the ACTION attribute of the FORM tag

	elements[ ]
	Array containing an entry for each element in the form (such as checkboxes, text field, and selection lists)

	ENCODING
	String containing the MIME type used for encoding the form contents sent to the server. Reflects the ENCTYPE attribute of the FORM tag

	length
	The number of elements in the form. Equivalent to elements.length.

	METHOD
	Specifies the technique for submitting the form. Values: GET or POST

	NAME
	String containing the value of the NAME attribute of the FORM tag

	TARGET
	String containing the name of the window targeted by a form submission


PROPERTIES

ACTION
With this property, you can ascertain the action specified in the form definition. For instance, in a form defined with the following:

<FORM METHOD="POST" ACTION="/cgi-bin/test.pl">

the ACTION property has a value of "/cgi-bin/test.pl".

ENCODING
The encoding property reflects the MIME type, which is used to encode the data submitted from a form to the server. This means that the property reflects the ENCTYPE attribute of the FORM tag, and you can set the encoding of a form by changing the value of this property.

The default value is "application/x-www-form-urlencoded" which is sufficient for almost all purposes. For example, a value "text/plain" is convenient when the FORM is being submitted by email to mailto:URL
This is useful when you want to upload a file to be processed by a CGI script on the server. For information go to http://www.ics.uci.edu/pub/ietf/html/rfc1867.txt.

METHOD
A read/write string that specifies the technique for submitting the form. It should have the value "GET" or "POST". Initially specified by the METHOD attribute.

<FORM METHOD="POST" ACTION="/cgi-bin/test.pl">

NAME
This property provides the programmer with the name specified in the form definition. In the form defined with the 

<FORM NAME="myForm" METHOD="POST" ACTION="/cgi-bin/test.pl">

the name property has a value of "myForm".

TARGET
The target property is similar to the action and name properties and makes the content of the TARGET attribute available to the programmer.  A read/write string that specifies the name of the frame or window in which the results of submitting a form should be displayed. Initially specified by the TARGET attribute. The special name "_top", "_parent", "_self", and "_blank" are also supported for the target property and the TARGET attribute (more of this will be covered in Week 8). In the FORM definition

<FORM NAME="myForm" TARGET="thatFrame" METHOD="POST" ACTION="/cgi-bin/test.pl">

the target property has a value of "thatFrame".

It is possible to dynamically change the target of a form by assigning a new value to the target property. In the preceding example, the target could be changed from thatFrame to anotherFrame by using document.myForm.target="anotherFrame".

METHODS

There is only one method available with the form object: submit().

Forms - A Quick Introduction
Hidden Fields

From a JavaScript standpoint, hidden text boxes behave just like regular text boxes, sharing the same properties and methods. From a user standpoint, hidden text boxes "don't exist" because they do not appear in the form. Rather, hidden text boxes are the means by which special information can be passed between server and client. They can also be used to hold temporary data that you might want to use later. 

For server/client communications, the server can send data to the client, storing a special value in a hidden field that the user doesn't see. For example, the value might be the number of times the user has submitted a form in the same session. If it's more than say, five times, the server knows not to accept any more entries from that user. The submission count is stored in a hidden field. 

Hidden fields are particularly handy for storing temporary data that your JavaScript program may need. Store the data in a hidden field, and it stays as long as the document remains loaded. (However, note that the contents of hidden fields are lost when a document or frame is reloaded or resized.)

TO SUM UP - because Hidden fields are 'hidden' they can contain useful information which as web page developers we can use to hide information from the visitor. When a form is submitted, the value of the hidden field is passed along with the other form values.

For example we could have a hidden field which has a predefined value, e.g. the current page location so that we can tell which form has been sent:

<FORM NAME="form1">
     <INPUT TYPE="hidden" NAME="hidden1" VALUE="apage.html">
     <INPUT TYPE="hidden" NAME="hidden2" VALUE="Form Tricks">
</FORM >

It is also possible to set the value of the hidden field:

<FORM NAME="form2">
     <INPUT TYPE="hidden" NAME="href" VALUE="">
     <INPUT TYPE="hidden" NAME="title" VALUE="">
     <INPUT TYPE="hidden" NAME="referrer" VALUE="">
     <INPUT TYPE="hidden" NAME="cookie" VALUE="">
</FORM >

<SCRIPT>

document.form2.href.value = location.href;
document.form2.title.value = document.title;
document.form2.referrer.value = document.referrer;
document.form2.cookie.value = document.cookie;

</SCRIPT>

It is also possible to retrieve the value of the hidden field:

<FORM NAME="form3">
     <INPUT TYPE="hidden" NAME="hidden1" VALUE="apage.html">
     <INPUT TYPE="hidden" NAME="hidden2" VALUE="Form Tricks">
</FORM >

<SCRIPT>

alert(document.form3.hidden1.value + ' ' + document.form3.hidden2.value);

</SCRIPT>

See the above examples combined in Action

Form Submission

A form can be submitted in 3 ways: 

· by the user pressing Enter in a Form with only one text field, or 

· by the use of a Submit Button, or 

· by using the submit() Method. 

The following example will allow all three:

<FORM NAME="form4">
     <INPUT TYPE="text">
     <INPUT TYPE="submit">
     <INPUT TYPE="button" VALUE="Press Me"
       onClick="this.form.submit();">
</FORM >

See Demo and additional Information on the above example.

submit() Method

Top of Form

<FORM NAME="FORM1">
     <INPUT TYPE="text">
     <INPUT TYPE="submit">
     <INPUT TYPE="button" VALUE="Press Me" onClick="this.form.submit();">
</FORM> 
<FORM NAME="FORM2">
     <INPUT TYPE="text" NAME="Name"> 
     <INPUT TYPE="submit">
     <INPUT TYPE="button" VALUE="Press Me" onClick="this.form.submit();">
</FORM>

Some of things to notice with these 2 FORMS:

· The Submit button & the Press Me button both do the same thing - submit the form's "results" to the FORM's ACTION. 

· What happens in the Address/Location Area of the browser when you submit a form?

FORM1 => URL?

FORM2 => URL?Name= 

· In FORM1 the text field has no name. If you put a value in FORM1's text field and then Submit the form what happens?

URL? 

· In FORM2 the text field has a name. If you put a value in FORM2's text field and then Submit the form what happens?

URL?Name=Value 
ACTION

The forms ACTION attribute details the URL of the page or cgi to be loaded/executed.

The URL can also use the mailto type.

ACTION will be covered in Week 6.

METHOD

Once the form has been submitted, it can be sent using two different methods (POST and GET) which indicates how the Form Data should be sent to the server. The default is GET. 

· GET - Appends the arguments to the action URL and opens it as if it were an anchor 

· POST - Sends the data via an HTTP post transaction 

METHOD will be covered in Week 6.

ENCTYPE

ENCTYPE specifies the MIME type of the posted form data. The default value is:

application/x-www-form-urlencoded.

When combined with the mailto: URL type the form once received by the target addressee the data will look something like the following:

       FORM NAME=formname&fieldname=Some+sample+text

However, there is another ENCTYPE that can be used, i.e. text/plain, which is supported by some News Readers.

TARGET

Loads the results of the form submission into the targeted window.

The window can be one of these values: 

· 'windowName' - Specifies to load the link into the targeted window called 'windowName'. 

· blank - Load into a new blank window. 

· parent - Load into the immediate parent of the current document. 

· self - Load into the current window. 

· top - Load into the full body of the window, i.e. replaces the frameset. 
This will be covered again in Week 8.

The following example demonstrates all of the above:

<FORM NAME="form5" ENCTYPE="text/plain" TARGET="top" METHOD="POST"
  ACTION="mailto.cgi">
     <INPUT TYPE="text" NAME="text5">
     <INPUT TYPE="button" VALUE="Press Me" onClick="this.form.submit();">
     <INPUT TYPE="submit">
</FORM>

Overriding Form Attributes

It is possible to override the ACTION, METHOD, ENCTYPE and TARGET Form Attributes.

For example the following form, which by default sends a message using an ISP's form to email cgi, to send the message using the mailto Method:

<SCRIPT>

function alter(form) {
     if (navigator.appName.indexOf('Netscape') > -1) {
          form.encoding = 'text/plain';
          form.action = 'mailto:someone@somewhere.com';
          form.method = 'POST';
     }
     return true;
}

</SCRIPT>

<FORM NAME="form6" ACTION="/cgi-bin/userform.cgi" METHOD="POST"
  onSubmit="return alter(this);">
     <INPUT TYPE="text" NAME="text6">
     <INPUT TYPE="submit">
</FORM>

Canceling Form Submission

Before the form is submitted by the browser it is possible to cancel the form submission, possible uses include form validation.

The following example will never submit:

<FORM NAME="form7" onSubmit="return false">
     <INPUT TYPE="text" NAME="text7">
     <INPUT TYPE="submit">
</FORM>

Setting the return value of the onSubmit event cause the form submission to be cancelled.

Using the return value in combination with a JavaScript function enables us to control whether the form is submitted or not.

The following example will only submit if the text field is not empty.

<SCRIPT>

function myfunction() {
     if (document.form8.textfield.value.length > 0) return true;
     else {
          alert('Text field empty!');
          return false;
     }
}

</SCRIPT>

<FORM NAME="form8" onSubmit="return myfunction();">
     <INPUT TYPE="text" NAME="textfield">
     <INPUT TYPE="submit">
</FORM>

This will be covered again next week.

Form Validation

There are two ways to validate form input, when the form is submitted or whilst the data is being entered.

There is only one JavaScript event to support validation of the form when it is submitted: 

· onSubmit - Event Handler of: Form 

There are many JavaScript events to support validation of the form while the data is being entered: 

· onBlur - occurs when the form element loses focus. Event Handler of: Button, Checkbox, FileUpload, Password, Radio, Reset, Select, Submit, Text, Textarea 

· onChange - occurs when the value of the form element changes. Event Handler of: FileUpload, Select, Text, Textarea 

· onClick - occur when the user clicks on the form element. Event Handler of: Button, Checkbox, Radio, Reset, Submit 

· onFocus - occurs when the form element gains the focus (opposite of onBlur). Event Handler of: Button, Checkbox, FileUpload, Password, Radio, Reset, Select, Submit, Text, Textarea 

· onSelect - occurs when the form element is selected. Event Handler of: Text, Textarea 

The following example demonstrates some simple form validation, it checks that the two form fields are not empty using the onSubmit Event Handler:

<SCRIPT>

function ValidateInput(form) {
     var LB = "\n";
     var msgHdr = "Please fill out your:" + LB + LB;
     var msg = "";

     if (form.First.value.length == 0) msg += "First Name" + LB;
     if (form.Last.value == "") msg += "Last Name" + LB;

     if (msg.length > 0) {
          alert(msgHdr + msg);
          return false;
     }
     else return true;
}

</SCRIPT>

<FORM NAME="form9" onSubmit="return ValidateInput(this);">
     First Name: <INPUT TYPE="text" NAME="First">
     Last Name:  <INPUT TYPE="text" NAME="Last">
     <INPUT TYPE="submit">
</FORM>

See the Demo - This demo will be expanded on next week.

There is also one other event not already mentioned: 

· onReset - occurs when a reset form element is clicked on. Event Handler of: Form
Form Elements


Top of Form

	FORM FIELD
	OBJECT
	SAMPLE SYNTAX

	Check Box
	[image: image3.wmf]
	<INPUT TYPE="checkbox" NAME="chkBox" VALUE="ON" CHECKED>

	Drop-Down Menu
	[image: image4.wmf]

Choice One


	<SELECT NAME="choice">
    <OPTION VALUE="1">Choice One</OPTION>
    <OPTION VALUE="2">Choice Two</OPTION>
    <OPTION VALUE="3">Choice Three</OPTION>
</SELECT>

	Hidden
	 
	<INPUT TYPE="hidden" NAME="hidden1" VALUE="apage.html">

	Password
	[image: image5.wmf]


	<INPUT TYPE="password" NAME="pwd1" VALUE="password" SIZE="20">

	Push Button
	[image: image6.wmf]

Button


	<INPUT TYPE="button" NAME="btn" VALUE="Button" >

	Radio Button 
	[image: image7.wmf]
	<INPUT TYPE="radio" NAME="rdoBtn" VALUE="selected" CHECKED> 

	Reset Button
	[image: image8.wmf]

Re

s

et


	<INPUT TYPE="reset" VALUE="Reset">

	Scrolling Text Box
	[image: image9.wmf]




	<TEXTAREA ROWS="2" NAME="txtArea" COLS="20" WRAP></TEXTAREA>

	Submit
	[image: image10.wmf]S

ubmit


	<INPUT TYPE="submit" VALUE=”Submit”>

	Text Box
	[image: image11.wmf]


	<INPUT TYPE="text" NAME="txtBox" SIZE="20">


Bottom of Form

Button – Simple Calculator

<SCRIPT>

function calculate(form) {
     form.results.value = eval(form.entry.value);
}

</SCRIPT>

<FORM>
     Enter a JavaScript mathematical expression:
     <INPUT TYPE="text" NAME="entry" VALUE>
     The result of this expression is:
     <INPUT TYPE="text" NAME="results" onFocus="this.blur();">
     <INPUT TYPE="button" VALUE="Calculate" onClick="calculate(this.form);">
</FORM>

See what happens when you try to change the "result" text field. blur() won't allow you to change the value.

Using Radio Buttons

Radio buttons are used to allow the user to select one, and only one, item from a group of options. Radio buttons are always used in multiples; there is no logical sense in having just one radio button on a form, because once you click on it, you can't unclick it. If you want a simple click/unclick choice use a check box instead. 

To define radio buttons for JavaScript, provide each object with the same name. JavaScript will create an array of buttons out of them; you then reference the buttons using the array indexes. The first button in the series is numbered 0, the second is numbered 1, and so forth. Note that the VALUE attribute is optional for JavaScript-only forms. You'll want to provide a value if you submit the form to a CGI program running on the server, however.

Radio Buttons

Happily, radio buttons are almost exactly like checkboxes with respect to JavaScript. The only real difference is in the HTML. Checkboxes are on/off devices. If a checkbox is checked, you can uncheck it. If it's unchecked, you can check it. Radio buttons are different. Once a radio button is on, it stays on until another one is selected. Then the first one goes off. Here's a typical radio button set:

Top of Form

[image: image12.wmf]Larry
[image: image13.wmf]Moe
[image: image14.wmf]Curly

Bottom of Form

<FORM>
     <INPUT TYPE="radio" NAME="stooges" VALUE="Larry" CHECKED>Larry
     <INPUT TYPE="radio" NAME="stooges" VALUE="Moe">Moe
     <INPUT TYPE="radio" NAME="stooges" VALUE="Curly">Curly
</FORM>

As you can see, you can't simply unselect a radio button, you have to choose a new one. With that in mind we can re-do the light switch example with two radio buttons instead of one checkbox:

Top of Form

[image: image15.wmf]Light off
[image: image16.wmf]

Light on

Bottom of Form

This example looks very much like the checkbox example. The form is: 

<FORM NAME="form1">
     <INPUT TYPE="radio" NAME="radio1" onClick="offButton();">Light off
     <INPUT TYPE="radio" NAME="radio2" onClick="onButton();" CHECKED>Light on
</FORM>

When the first radio button is clicked, the offButton() function is called. That function is: 

function offButton() {
     document.form1.radio2.checked = false;
      document.bgColor = 'black';
      alert("Hey! Turn that back on!");
}

This is pretty much just like the checkbox example earlier. The main difference is this line: 

document.form1.radio2.checked= false;

This tells JavaScript to turn off the other button when this button has been clicked. The function that is run when the other button is clicked is similar to this one: 

function onButton() {
     document.form1.radio1.checked= false;
     document.bgColor = 'white';
     alert("Thanks!");
}

There are a few more details about checkboxes and radio buttons, but those can wait until the next set of tutorials.

Radio Button Test

Bottom of Form

<SCRIPT> 

function testButton(form){
     for (Count = 0; Count < 3; Count++) {
          // when the radio button is found drop out of the for loop
          if (form.test[Count].checked) break;
     }
     alert ("document.testform.test[ " + Count + "] is selected");
}

</SCRIPT>

<FORM NAME="testform">
     <INPUT TYPE="radio" NAME="test" VALUE="rdoBtn1" onClick>
     <INPUT TYPE="radio" NAME="test" VALUE="rdoBtn2" onClick="">
     <INPUT TYPE="radio" NAME="test" VALUE="rdoBtn3" onClick="0">
     <INPUT TYPE="button" VALUE="Click" onClick="testButton(this.form)">
</FORM>

The for loop in the testButton() cycles through all of the buttons in the "test" group. When it finds the button that's selected, it breaks out of the loop and displays the button number (remember: starting from 0).

Setting a radio button selection with HTML market is simple. If you want the form to initially appear with a given radio button selected, add the CHECKED attribute to the HTML markup for that button: 

<INPUT TYPE="radio" NAME="test" VALUE="rdoBtn1" CHECKED onClick="0"> 

You can also set the button selection programmatically with JavaScript, using the CHECKED Property. Specify the index of the radio button array you want to checked.

form.test[0].checked = true; // sets to first button in the test group

Which browser is your favorite?

Version 1

<SCRIPT> 

function check(browser) {
     document.forms[0].answer.value = browser;
}

</SCRIPT>

<FORM>
    <INPUT TYPE="radio" NAME="browser" VALUE="Explorer"   
      onClick="check(this.value)">Microsoft Internet Explorer
    <INPUT TYPE="radio" NAME="browser" VALUE="Netscape"
      onClick="check(this.value)">Netscape Navigator
    <INPUT TYPE="text" NAME="answer">
</FORM>

Version 2

<SCRIPT> 

function check(form, browser) {
     form.answer.value = browser;
}

</SCRIPT>

<FORM>
    <INPUT TYPE="radio" NAME="browser" VALUE="Explorer"   
      onClick="check(this.form, this.value)">Microsoft Internet Explorer
    <INPUT TYPE="radio" NAME="browser" VALUE="Netscape"
      onClick="check(this.form, this.value)">Netscape Navigator
    <INPUT TYPE="text" NAME="answer">
</FORM>

In this version 2 parameters are passed to the function check(): 1) "the form", & 2) the radio button's value.

By using this approach we don't need to provide the entire path in order to put the browser value into the answer text field.

Advantage: If you decide to put additional Forms in front of our Browser Form, nothing needs to be changed. In the first example we would have to change document.forms[0] to reflect the Forms new position within the document.

Temperature Conversion

<SCRIPT> 

function displayTemp(form) {
     var tempVal, finalC, finalF, finalTemp;

     if (form.TC[0].checked) {
          tempVal = form.yourInput.value;
          finalC = (tempVal - 32) * (5 / 9);
          finalTemp = Math.round(finalC) + " degrees Celsius";
     }
     else {
          tempVal = form.yourInput.value;
          finalF = (tempVal * (9 / 5)) + 32;
          finalTemp =Math.round(finalF) + " degrees Fahrenheit";
     }

    form.result.value = finalTemp;
}

</SCRIPT>

<FORM>
     <INPUT TYPE="text" NAME="yourInput" onChange="displayTemp(this.form);">
     <INPUT TYPE="radio" NAME="TC" CHECKED
       onClick="displayTemp(this.form);" > Fahrenheit
     <INPUT TYPE="radio" NAME="TC" onClick="displayTemp(this.form);"> Celsius
     Is equal to: 
    <INPUT TYPE="text" NAME="result">
</FORM>

Annotated Version

<SCRIPT> 

function displayTemp(form) {
     var tempVal, finalC, finalF, finalTemp;

     // checks to see if the first TC radio button is checked
     // - meaning convert Fahrenheit to Celsius
     if (form.TC[0].checked) {
          // get the inputted value from yourInput text field
          tempVal = form.yourInput.value;
          // formula for converting from Fahrenheit to Celsius
          finalC = (tempVal - 32) * (5 / 9);
          finalTemp = Math.round(finalC) + " degrees Celsius";
     }
     // checks to see if the second TC radio button is checked
     // - meaning convert Celsius to Fahrenheit
     else {
          // get the inputted value from yourInput text field
          tempVal = form.yourInput.value;
          // formula for converting Celsius from to Fahrenheit
          finalF = (tempVal * (9 / 5)) + 32;
          finalTemp =Math.round(finalF) + " degrees Fahrenheit";
     }
    // output the result of the conversion to the result text field
    form.result.value = finalTemp;
}

</SCRIPT>

<FORM>
     <INPUT TYPE="text" NAME="yourInput" onChange="displayTemp(this.form);">

the radio buttons act as an array in this case, with the first radio button being checked,
an array, in this case, means that when you check one of the buttons the other one automatically gets unchecked

     <INPUT TYPE="radio" NAME="TC" CHECKED
       onClick="displayTemp(this.form);"> Fahrenheit
     <INPUT TYPE="radio" NAME="TC" onClick="displayTemp(this.form);"> Celsius
     Is equal to: 
     <INPUT TYPE="text" NAME="result">
</FORM>

Double or Square?

<SCRIPT>

function calculate(form, callingField) {
     if (callingField == "result") { // is the calling field the "result" field?
          // is the "square" radio button checked?
          if (form.action[1].checked) form.entry.value = Math.sqrt(form.result.value);
          else form.entry.value = form.result.value / 2;
     } 
     else {
          if (form.action[1].checked) form.result.value = Math.pow(form.entry.value, 2)
          else form.result.value = form.entry.value * 2;
    } 
}

</SCRIPT>

<FORM>
     Value: 
     <INPUT TYPE="text" NAME="entry" VALUE="0"
       onChange="calculate(this.form, this.name);">
     Action:
    <INPUT TYPE="radio" NAME="action" VALUE="twice" 
      onClick="calculate(this.form, this.name);">
    Double
    <INPUT TYPE="radio" NAME="action" VALUE="square" 
      onClick="calculate(this.form, this.name);">
    Square Result: 
     <INPUT TYPE="text" NAME="result" VALUE="0"
       onChange="calculate(this.form, this.name);">
</FORM>

calculate(this.form, this.name) passes 2 parameters:

this.form -- because we want to pass all the form's information to the function
this.name -- to tell the function what particular form element made the call

CheckBox Test

Top of Form

Bottom of Form

<SCRIPT> 

function testButton(form){
     var alertStr = "";

     for (Count = 0; Count < 3; Count++) {
          if (form[Count].checked) 
               alertStr += "CheckBox " + (Count + 1) + " is checked\n";
     }

     if (alertStr == "") alertStr = "No CheckBox was selected";

     alert(alertStr);
}

</SCRIPT>

<FORM NAME="testform">
     <INPUT TYPE="checkbox" NAME="check1" VALUE="Check1">Checkbox 1
     <INPUT TYPE="checkbox" NAME="check2" VALUE="Check2">Checkbox 2
     <INPUT TYPE="checkbox" NAME="check3" VALUE="Check3">Checkbox 3
     <INPUT TYPE="button" VALUE="Click" onClick="testButton(this.form)">
</FORM>

As with the radio button object, add a CHECKED attribute to the HTML markup for that check box you wish to be initially check when the form is first loaded.

<INPUT TYPE="checkbox" NAME="check1" VALUE="Check1" 
  CHECKED>Checkbox 1 

You can also set the button selection programmatically with JavaScript, using the CHECKED Property. Specify the name of the checkbox you want to check, as in 

form.check1.checked = true;

CheckBox Calculator

<SCRIPT>

function calculate(form, callingField) {
     if (callingField == "result") { // is the calling field the "result" field?
          // is the "square" check box checked?
          if (form.square.checked) form.entry.value = Math.sqrt(form.result.value);
          else form.entry.value = form.result.value / 2;
      }
      else {
           // if (form.square.checked) form.result.value = Math.pow(form.entry.value, 2) 
           if (form.square.checked) 
                form.result.value = form.entry.value * form.entry.value;
           else form.result.value = form.entry.value * 2;
     }
}

</SCRIPT>

<FORM>
     Value:
     <INPUT TYPE="text" NAME="entry" VALUE="0"
       onChange="calculate(this.form, this.name);">
     Action: (default double/half)
     <INPUT TYPE="checkbox" NAME="square"
       onClick="calculate(this.form, this.name);">
     Square/Square Root Result:
     <INPUT TYPE="text" NAME="result" VALUE="0"
       onChange="calculate(this.form, this.name);">
</FORM>

calculate(this.form, this.name) passes 2 parameters:

this.form -- because we want to pass all the form's information to the function
this.name -- to tell the function what particular form element made the call

Manipulating the Value of a Text Field

Mouse over the links below the text field and see what happens.

Top of Form

[image: image17.wmf]

Are you happy?


Bottom of Form

Yes, and I know it.     No!
This magic is performed by changing the value of the text field. The form looks like the one in the last example: 

<FORM NAME="form1">
     <INPUT TYPE="text" NAME="text1" VALUE="Are you happy?">
</FORM>

The links that change the text field are: 

NOTE: javascript:void(null) or javascript:void("") or javascript:void('')
are used to "deaden" a link

<A HREF="javascript:void(null)"
  onMouseOver="document.form1.text1.value='Clap clap!';">Yes, and I know it.
</A>

<A HREF="javascript:void(null)"
  onMouseOver="document.form1.text1.value='Sour puss!';">No!
</A>

These are normal mouseovers; the important part is: document.form1.text1.value='Clap clap!'. This says, "find the form called form1 in the document, find the form element called text1, and set its value to 'Clap clap!'." The second line works similarly. This is very much like changing the src of an image. Instead of having a src, text fields have values.

Other types of form elements can be affected by messing with their values - for example, TextAreas:

Top of Form

[image: image18.wmf]



Mouse over below to see the first verse of

The Webmonkey song, adapted from

"I Wanna Be Like You" (The Monkey Song)

from Walt Disney's The Jungle Book

written by Richard M. Sherman and Robert B. Sherman






Bottom of Form

Part 1                 Part 2
The forms and links here are very similar to those above. The form is: 

<FORM NAME="form2">
     <TEXTAREA NAME="theTextarea" ROWS="10" COLS="60">
           Mouse over below to see the first verse of
           The Webmonkey song, adapted from
           "I Wanna Be Like You" (The Monkey Song)
           from Walt Disney's The Jungle Book
           written by Richard M. Sherman and Robert B. Sherman
     </TEXTAREA>
</FORM>

Notice that the form has a name, form2, and the textarea has a name as well, theTextarea.

The links are basically the same as what you saw in the text field example: 

<A HREF="javascript:void(null)"
  onMouseOver="document.form2.theTextarea.value=Part1;">Part 1
</A>

<A HREF="javascript:void(null)"
  onMouseOver="document.form2.theTextarea.value=Part2;">Part 2
</A>

The only difference is that instead of assigning a string to the value of the <TEXTAREA>s, I assigned variables that I defined in the header. View Source to see that they're there. I only did this for the sake of neatness, to get those long strings out of the HTML. Here's one of the strings: 

var Part1 = "Now I'm the king of the swingers\n
Oh, the jungle VIP\nI've reached the top and had to stop\n
And that's what botherin' me";

Notice the "\n". In general, because you're working with HTML, the new line isn't important. But if you're writing something in a <PRE> tag, or you're writing into a textarea, the "\n" comes in handy.

In addition to changing the values of form elements, JavaScript allows you to detect events that go on inside of them.

Detecting Text Field Events

Text fields understand onBlur, onFocus, and onChange. The onFocus event occurs when someone clicks inside a text field. onBlur happens when somebody moves out of a text field by clicking outside of it, or hitting "tab." onChange happens when somebody changes what's in the text field and then moves outside the text field. 

Try the demo online.

Top of Form

Bottom of Form

Here's how this works. The text field looks like this: 

<INPUT TYPE="text" NAME="text1" 
  onFocus="writeIt('focus');" 
  onBlur="writeIt('blur');" 
  onChange="writeIt('change');"> 

Each of the Event Handlers calls the function writeIt(), which I've defined in the header. The header looks like this:

<HEAD> <TITLE>Text Field Events</TITLE> 

<SCRIPT> 

function writeIt(theWord) {
     var returnWord = theWord + "\n";
     document.form1.theTextarea.value += returnWord; 
}

</SCRIPT>

</HEAD> 

This should all look pretty familiar to you. The first few lines are the typical JavaScript preamble and the function definition. The first line in the body of the function

var returnWord = theWord + "\n"; 

initializes a new variable, returnWord, and sets it equal to the string that was passed into the function concatenated with a "\n". 

The next line

document.form1.theTextarea.value += returnWord; 

says, "set the value of the textarea to its current value plus the new variable." This shortcut was covered when we learned about loops. It's the same as saying

document.form1.theTextarea.value =
document.form1.theTextarea.value + returnWord; 

It just takes less time. So far, we've seen a property of text fields and textareas (the value) and some events that they can handle. The remaining thing to know about these elements is the methods that they can handle: blur(), focus(), and select(). 

Here are some links to show you how focus() and select() work. Beware that they sometimes stop working after the first time: 

Top of Form

[image: image19.wmf]

Hey, hey, we're the monkeys


Bottom of Form

onMouseOver to focus  onMouseOver to select
Here are the form and the two links: 

<FORM NAME="methodForm">
     <INPUT TYPE="text" NAME="methodTxt" VALUE="Hey, hey, we're the monkeys">
</FORM>

<A HREF="javascript:void(null)" 
  onMouseOver="document.methodForm.methodTxt.focus();">
Mouseover to focus
</A>
<A HREF="javascript:void(null)" 
  onMouseOver="document.methodForm.methodTxt.select();">
Mouseover to select
</A> 

Accessing the methods of a text field is just like accessing the methods of any object: objectName.method(). The name of a text field is document.formName.txtFieldName. So, to call the focus() method on the text field above, we call:

document.methodForm.methodTxt.focus(); 

That's pretty much all there is to know about text fields and textareas.

Reflect

<SCRIPT>

function echo(form, currentField) {
     if (currentField == "first")
          form.second.value = form.first.value;
     else
          form.first.value = form.second.value;
}

</SCRIPT>

<FORM>
     <INPUT TYPE="text" NAME="first" onChange="echo(this.form, this.name);">
     <INPUT TYPE="text" NAME="second" onChange="echo(this.form, this.name);">
</FORM>

This example illustrates an important point. 

echo(this.form, this.name) passes 2 parameters:

this.form -- because we want to pass all the form's information to the function
this.name -- to tell the function what particular form element made the call

"Less Clutter"

Top of Form

	[image: image20.wmf]

Name



	[image: image21.wmf]

E-mail Address



	[image: image22.wmf]

Phone Number




Bottom of Form

<SCRIPT>

function clearField(field) {
     // Check if field contains the default value
     if (field.value == field.defaultValue) {
          // It does, so clear the field
          field.value = "";
     }
}

function checkField(field) {
     // Check if user has entered information in the field
     if (field.value == "") {
          // User has not entered anything
          field.value = field.defaultValue;
     }
}

</SCRIPT>

<FORM>
     <INPUT TYPE="text" NAME="name" VALUE="Name"
       onFocus="clearField(this);" onBlur="checkField(this);">
     <INPUT TYPE="text" NAME="email" VALUE="E-mail Address"
       onFocus="clearField(this);" onBlur="checkField(this);">
     <INPUT TYPE="text" NAME="phone" VALUE="Phone Number" 
       onFocus="clearField(this);" onBlur="checkField(this);">
</FORM>

The SELECT Element
Selection lists in HTML FORMS appear as drop-down menus or scrollable lists of selectable items. Lists are built using two: <SELECT> and <OPTION> for instance, the following code:

<SELECT NAME="test">
     <OPTION>1
     <OPTION>2
     <OPTION SELECTED>3
</SELECT>

creates a three-item, drop-down menu with the choices 1, 2, and 3. Using the SIZE attribute you can create a scrollable list with the number of elements visible at one time indicated by the value of SIZE attribute. To turn your drop-down menu into a scrollable menu with two visible items you could use the following:

<SELECT NAME="test" SIZE="2">
     <OPTION>1
     <OPTION SELECTED>2
     <OPTION>3
</SELECT>

In both of these examples, the user can make only one choice. Using the MULTIPLE attribute, you can enable the user to select more than one choice in a scrollable selection list:

<SELECT NAME="test" SIZE="2" MULTIPLE>
     <OPTION VALUE="Number One">1
     <OPTION VALUE="The Second">2
     <OPTION VALUE="Three is It" SELECTED>3
</SELECT>

The <OPTION> tag consists of two "value" parts: 1) "value" & 2) "text"

· test.options[1].value equals "The Second" 

· test.options[2].text equals 3 

Selection lists are accessible in JavaScript through the <SELECT> Object. This object bears some similarity to both the buttons as well the radio buttons.

Properties
	PROPERTY
	DESCRIPTION

	defaultSelected
	indicates whether the option is selected by default in the <OPTION> tag

	length
	a read-only integer that specifies the number of elements in the options[ ] array (ie, the number of options that appear in the <SELECT> element)

	options
	an array of <OPTION> objects, each of which describes one of the options displayed within the Select element

	selectedIndex
	an integer that specifies the index of the selected option within the <SELECT> element. If the <SELECT> element has its MULTIPLE attribute set and allows multiple selections, this property only specifies the index of the first selected item or –1 if none are selected

	type
	a read-only string that specifies the type of this form element. For <SELECT> elements, it has the value "select-one" or "select-multiple".


As with radio buttons, the list of options is maintained as an Array with indexes starting at zero. In this case, the array is a property of the <SELECT> Object is called options.
Both selection option and the individual option elements have properties. In addition to the options array, the select object has the selectedIndex property, which contains the index number of the currently selected option.

Each option in a s selection list also has several properties. defaultSelected indicates whether the option is selected by default in the <OPTION> tag. The index property contains the index value of the current option in the options[] array. Again, as you might expect, selected indicates the current status of the option, text contains the value of the text displayed in the menu for the specific option, and value contains any value indicated in the <OPTION> tag.

The  <SELECT> Object has no available methods. However, the <SELECT> Object has an Event Handler - onChange.

For example, if you have the following selection list:

<SELECT NAME="example" onChange="react(this);">
     <OPTION VALUE="Number One">1
     <OPTION VALUE="The Second" SELECTED>2
     <OPTION VALUE="Three is It">3
</SELECT>

then when the list is first displayed, you have would have access to the following information:

· example.options[1].value == "The Second" 

· example.options[2].text == "3" 

· example.options[1].defaultSelected == true
Which browser is your favorite?

<SCRIPT> 

function check() {
     var browser = 
     document.forms[0].dropdown.options[document.forms[0].dropdown.selectedIndex].text;

     document.forms[0].favorite.value = browser;
}

</SCRIPT>

<FORM>

Select your favorite browser:
<SELECT NAME="dropdown" onChange="check()">
    <OPTION>Internet Explorer
    <OPTION>Netscape Navigator
</SELECT>

Your favorite browser is: <INPUT TYPE="text" NAME="favorite">

</FORM>

Version 2

<SCRIPT> 

function check(form) {
     var browser = form.dropdown.options[form.dropdown.selectedIndex].text;

     form.favorite.value = browser;
}

</SCRIPT>

<FORM>

Select your favorite browser:
<SELECT NAME="dropdown" onChange="check(this.form)">
    <OPTION>Internet Explorer
    <OPTION>Netscape Navigator
</SELECT>

Your favorite browser is: <INPUT TYPE="text" NAME="favorite">

</FORM>

Version 3

<SCRIPT> 

function check(form, select) {
     var browser = select[select.selectedIndex].text;

     form.favorite.value = browser;
}

</SCRIPT>

<FORM>

Select your favorite browser: 
<SELECT NAME="dropdown" onChange="check(this.form, this)">
    <OPTION>Internet Explorer
    <OPTION>Netscape Navigator
</SELECT>

Your favorite browser is: <INPUT TYPE="text" NAME="favorite">

</FORM>

Selects

There are two primary kinds of "selects", pulldown selects and list selects. Here are examples of each:

Top of Form

	
Pulldown:
[image: image23.wmf]

probiscus


	List:
   [image: image24.wmf]

probiscus



spider



lemur




Bottom of Form

The thing that makes select objects strange is that the whole select is named, but none of the select's options is. 

	
<SELECT NAME="pulldown1">
    <OPTION>probiscus
    <OPTION>spider
    <OPTION>lemur
    <OPTION>chimp
    <OPTION>gorilla
    <OPTION>orangutan
</SELECT>
	
<SELECT NAME="list1" SIZE="3">
    <OPTION>probiscus</OPTION>
    <OPTION>spider</OPTION>
    <OPTION>lemur</OPTION>
    <OPTION>chimp</OPTION>
    <OPTION>gorilla</OPTION>
    <OPTION>orangutan</OPTION>
</SELECT>


Notice that the whole select is named pulldown1, but the individual options aren't named. This makes it difficult to access individual options.

Luckily, through the magic of arrays and objects, there's a way to access and change the options of a select. If you wanted to change the second option of the pulldown menu, you'd type: 

document.form1.pulldown1.options[1].text = 'newText';

This works because the select element has an options property that is an array of all the select's options. You can grab one of the options in the array and change its text property. Try the online demo and then scroll up to see that the pulldown menu actually changed. The second option in the pulldown select should now be *Frank*.

In addition to the options property, selects have a property called selectedIndex. When one option in a select has been chosen, the selectedIndex property of the select will be the array number of the selected option. To test this online demo, select one of the options in the list select (the second one) and then check the index. Remember that the first option in the array is option 0. The line I used to check this was: 

<A HREF="javascript:void(null)"
  onClick="alert('index is: ' + document.form1.list1.selectedIndex); 
  return false;">
check the index.
</A>

The form is named form1, the list select is named list1. To get the selectedIndex, I looked at window.document.form1.list1.selectedIndex. If you want, you can set the selectedIndex thus: 

document.form1.list1.selectedIndex = 1;

and highlight the second option in the list1 select.

Once you know the index number of the selected option, you can find out what it is: 

var theSelect = document.form1.list1;
var theIndex = theSelect.selectedIndex;
var theSelected = theSelect.options[theIndex].text;

The selectedIndex property is great when you only have one option selected. What happens when you have more than one option selected?

Just like the other form elements, the select element has a handler: onChange(). This handler gets called whenever there's a change to the select.

Multiple Selects

Remember, putting the word "multiple" inside a select lets users select multiple options. If more than one option is chosen, the selectedIndex property of the select will contain the index number of the first option selected. How then do you get a list of all the options that a user has selected? 

The way to do it is to check the selected property of each option object. For example, choose a few options below and hit the Select button. You can choose multiple options by holding down the control or shift key while you click. 

Top of Form

Multiple list:
[image: image25.wmf]

probiscus



spider



lemur



chimp


[image: image26.wmf]

S

elect a few, then click me


Bottom of Form

Here's how this works. The form looks like the forms from last page, except there's an onSubmit() in the form: 

<FORM NAME="form1" onSubmit="reportMultiple(); return false;">

<B>Multiple list:</B>

<SELECT NAME="list1" SIZE="4" MULTIPLE>
    <OPTION>probiscus
    <OPTION>spider
    <OPTION>lemur
    <OPTION>chimp
    <OPTION>gorilla
    <OPTION>orangutan
</SELECT>

<INPUT TYPE="Submit" VALUE="Select a few, then click me">

</FORM>

When you click on the Submit button, the onSubmit event handler gets triggered and reportMultiple() is called. reportMultiple() is defined in the header and looks like this: 

function reportMultiple() {
     var optString = "";
     var theSelect = document.form1.list1;

     for (loop = 0; loop < theSelect.options.length; loop++) {
          if (theSelect.options[loop].selected == true) {
               optString += theSelect.options[loop].text + " ";
          }
     }

     alert("you selected: " + optString);
}

The first thing reportMultiple() does is declare theSelect to refer to the select box and declare optString to be blank. Then the function goes into a for loop, looping through all the options of the select. You can do this because the options property of a select form element is an array. You can find the number of options that are in a select element just like you can find out how long any array is. 

Inside the for loop, we check the selected property of each option. If it's true, we add the text property of that option to optString. When all the options have been checked, the loop exits and the alert box gets thrown up.

This looping through the options array and checking the selected property of each option is the only way to know which options were selected in a multiple-list select. I told you select elements were strange.

35

_1040733166.unknown

_1040735686.unknown

_1040736937.unknown

_1040759918.unknown

_1040760712.unknown

_1040760714.unknown

_1040759921.unknown

_1040736939.unknown

_1040736263.unknown

_1040736935.unknown

_1040735688.unknown

_1040733170.unknown

_1040733171.unknown

_1040733168.unknown

_1040731745.unknown

_1040732623.unknown

_1040732624.unknown

_1040733165.unknown

_1040731894.unknown

_1040732621.unknown

_1040731309.unknown

_1040731739.unknown

_1040731743.unknown

_1040731737.unknown

_1040731733.unknown

_1040731308.unknown

