Media Types and Subtypes

What are MIME Types and Content Types?

When we send any resource (such as a file or document of any type) to the client browser, the Webserver prefixes the stream of bytes that contain the file or resource with a series of HTTP Headers. This particular topic - Headers - was also mentioned in Week 6. These headers describe the Webserver and the communication details to the client. For example, the headers indicate the type of Webserver software in use, the date and time on the server, the HTTP protocol and the type of connection in use. It also includes the cookie that the client should store for this virtual path or domain.

More important in this context is that the headers also include the content type of the resource that is being sent. This is indicated by the Content-Type header, the value of which is one of the standard MIME types. By looking at the MIME type, the browser knows what kind of file this stream of data represents. For an HTML page, the standard MIME type is "text/html", and for a text file or text stream it is "text/text". Image files have MIME types such as "image/gif" or "image/jpeg".

Media Types
So, media types are used to communicate the format of the content in HTTP transactions. Clients use media types in their Accept headers to indicate what formats they prefer to receive data in. Servers use media types in their Content-Type headers to tell the client what format the accompanying entity is in -- ie, whether the enclosed text is HTML that needs to be formatted, GIF or JPEG to be rendered, or PDF format that requires opening an external viewer or using a plug-in.

Internet media types used by HTTP closely resemble MIME types. MIME (Multipurpose Internet Mail Extension) was designed as a method for sending attachments in mail over the Internet. Like MIME, media types follow the format type/subtype. Asterisks (*) represent a wildcard -- for example, the following client header means that documents of all formats are accepted:

Accept: */*

The following client header means that all text format types are accepted, regardless of the subtype:

Accept: text/*

Servers and CGI programs are expected to examine the accept types reported by the Accept header and return data of an acceptable type when possible. Most servers determine the format of a document from its filename suffix -- for example, a file ending with .htm or .html is assumed to be HTML format, so the server will send the document with a Content-Type of "text/html". When calling a CGI program, servers cannot know the format of the data being returned, so the CGI program is responsible for reporting the Content-Type itself. For that reason, every CGI program needs to include a Content-Type header such as:

Content-Type: text/html

The following table lists commonly used media types along with the filename suffixes recognized by most servers. Most servers can be easily configured to recognize additional suffixes as well.

Sample Media Types along with the Filename Suffixes
	Type/Subtype
	Usual extension

	application/pdf
	pdf

	application/postscript
	ai, eps, ps

	application/x-tar
	tar

	application/x-wais-source
	src

	application/zip
	zip

	audio/32kadpcm audio/basic
	au, snd

	audio/x-wav
	wav

	image/gif
	gif

	image/jpeg
	jpeg, jpg, jpe

	text/html
	html, htm

	text/plain
	txt

	video/mpeg
	mpeg, mpg, mpe

	video/quicktime
	qt, mov

Plug-ins & Viewers
Plug-ins are software applications that work within your Web browser to extend its capabilities. They allow a browser to display movies, play sounds, or otherwise enhance the basic pictures-and-text experience that most Web sites offer. No big deal, you say? You already have applications on your computer that let you download and play files? Plug-ins, however, differ from the applications that you have sitting on your hard drive in a few ways. The most important is that plug-ins work within the browser.

While you don't need a plug-in to save an .avi video file on your hard drive (and then open it using a separate program that can handle .avi files), the right plug-in can enable your browser to simply open up the file and play it right on a Web page. This means two fewer steps between clicking on the link and hearing the results, and less clutter on your desktop. It also means a movie or animation can be integrated with the rest of a Web page.

So what can plug-ins do? Most fall into a few general categories: images and animation, audio, video, business applications, and utilities. More specifically, some plug-ins let you view 3-D images, watch videos and movies, participate verbally in cross-country conferences, listen to radio shows, or have a Web page read itself out loud.

The only thing that limits your plug-in playing is your computer platform (Unix, Macintosh, or Windows). Like browsers, most plug-ins are developed to run on a specific computer platform, so you may be out of luck if you want to run a platform specific plug-in.

Plug-ins were unleashed on the Web by Netscape back when it released Navigator 2.0, and they have been supported in Microsoft's Internet Explorer since version 2.0. In addition, Internet Explorer now supports ActiveX controls, which accomplish the same thing as plug-ins in a slightly different way.
Checking for Plug-ins & Viewers
You can easily check for support of a given data format on the browser:

//Check to see if the browser can display MPEG files.
var show_movie = (navigator.mimeTypes["video/mpeg"] != null);

You can also check for the existence of a particular plugin without having to loop through the array numerically and check every element:

//Check to see if the browser has the Shockwave plugin installed
var shocked = (navigator.plugins["Shockwave"] != null);

So from the above examples you can see that you have the ability to see what files types can be handled by the browser. Specifically which plug-ins and viewers have been installed. There are two objects and two arrays you can use to do this.

· Plugin - a plug-in that has been installed in the browser

· plugins - an array listing the Plugin objects

· MimeType - a MIME (Multipart Internet Mail Extension) file format recognized by the browser

· mimeTypes - an array of MimeType objects; mimeTypes is a property of both the navigator and Pluging objects

There are three ways that the browser can handle data files transmitted to it:

· Display it internally - by default browsers have the ability to display HTML, text files, gifs & jpg (jpeg) files, and work with wav, au and snd files.

· Display it in an external viewer - a viewer is another program to which the browser sends the file if it can't handle it itself.

· Display it in a plug-in - a plug-in is really an internal viewer or module that has been added to the browser for the purpose of handling particular file formats.

JavaScript can be used to see what files can be handled by the browser, so you can a script to decide what to display to the browser. You can use mimeTypes and MimeType to find out which MIME file formats the browser is configured to use internally or with an external viewer, and use Plugin and plugins to find out which plug-ins have been installed. You can also use mimeTypes and MimeType to find out which MIME types those plug-ins can handle.

What File Types Can the Browser Work With?

[This example works with Netscape but it will not work in the Internet Explorer]

This page uses the plugins and mimeTypes arrays to show you what plug-ins are installed on your browser, and what MIME types can be handled by your browser:

These are the MIME Types:

<SCRIPT>
for (i = 0; i < navigator.mimeTypes.length; i++) {
 document.write("" + i + ": " +
 navigator.mimeTypes[i].type + ":" +
 navigator.mimeTypes[i].description + "
>" +
 navigator.mimeTypes[i].suffixes + "
" +
 navigator.mimeTypes[i].enabledPlugin + "<P>");
}
</SCRIPT>

These are the plug-ins:

<SCRIPT>
for (i = 0; i < navigator.plugins.length; i++) {
 document.write("" + i + ": " +
 navigator.plugins[i].name + ":" +
 navigator.plugins[i].filename + "
" +
 navigator.plugins[i].description + "
" +
 navigator.plugins[i].length + "<P>");
}
</SCRIPT>

mimeTypes - represents a MIME data type

navigator.mimeTypes[i] or navigator.mimeTypes['type']

· description - a description of a MIME type

· enabledPlugin - the plugin that handles the MIME type

· suffixes - common file suffixes for a MIME type

· type - the name of a MIME type

plugins - describes an installed plugin

navigator.plugins[i] or navigator.plugins['name']

· description - description of a plugin

· filename - the filename of the plugin program - the name of file on the disk that contains the plugin program itself.
· length - the number of MIME types supported - specify the data formats supported by the plugin.

· name - the name of a plugin
Here is tonight's dinner:

<SCRIPT>

/*
checking to see if the navigator.plugins object contains the name "QuickTime Plugin". If it does go ahead & play the QuickTime movie "dinner.mov" else display the "dinner.gif" instead of the QuickTime movie. NOTE: the <EMBED> tag is used for putting QuickTime movies into Web pages.
*/

if (navigator.plugins["QuickTime Plugin"]) {
 document.write(
 '<EMBED SRC="images/dinner.mov"
 LOOP="false" AUTOPLAY="true" WIDTH="160" HEIGHT="144">'
)
}
else
 document.write('')

/****** Alternative Check ********/
document.write(
 navigator.plugins["QuickTime Plugin"] ?
 '<EMBED SRC="images/dinner.mov"
 LOOP="false" AUTOPLAY="true" WIDTH="160" HEIGHT="144">') :
 ''
);

/*******************************/
</SCRIPT>

Embedded Data

The embeds[] array contains objects that represent data embedded in the document with the <EMBED> tag. Embedded data can take many forms (audio, video, spreadsheets, etc...). The browser must have an appropriate viewer installed or available so that it can display the data to the user. In Navigator, special modules known as "plugins" are responsible for displaying embedded data. In the Internet Explorer, embedded data is displayed by ActiveX controls. Both plugins and ActiveX controls can be automatically downloaded from the network and installed as needed.

Each plug-in in a document is reflected in JavaScript as an element in the embeds array. For example, the following HTML code includes an AVI plug-in in a document:

<EMBED SRC="myavi.avi" NAME="myEmbed" WIDTH="320" HEIGHT="200">

If this HTML defines the first plug-in in a document, you can access it in any of the following ways:

· document.embeds[0]

· document.embeds["myEmbed"]

· document.myEmbed

The embeds array has a length property, document.embeds.length, that indicates the number of plug-ins embedded in the document.

For example, the documentation for the LiveVideo plugin from Netscape says that the LiveVideo object in the embeds[] array supports four methods: play(), stop(), rewind(), and seek(). With this information, you can write simple scripts that control how the plugin display the movie you have embedded on the web page.

<EMBED SRC="moof.au" NAME="moof"
 HIDDEN="TRUE" LOOP="FALSE" AUTOSTART="FALSE" MASTERSOUND>

The HTML EMBED tag needs several bits of information.

· AUTOSTART to FALSE means that the sound won't start to by itself when the page is loaded

· HIDDEN to TRUE makes sure that the LiveAudio doesn't display its own built-in control panel.

· MASTERSOUND is a required attribute whenever you use a named sound

· NAME provides a name to the sound object for the JavaScript to use

· SRC attribute gives the EMBED the name of the sound file
Checking for plug-ins

Sorry, you don't have the plug-in plug-in

<SCRIPT>

/*
First we name the plug-in we are looking for & then we set the switch hasplugin to false. This switch will only be set to true if the plug-in exists.
*/

var plugin = prompt("Check for the following plugin:", "plug-in");
var hasPlugin = false;

/*
The array of elements of the Plugin object are MimeType objects that specify the data formats supported by the plugin. The object navigator.plugins.length gives the number of installed plug-ins. The loop goes through all the plug-in names looking for "plugin", if it finds the "plugin" name then the switch hasPlugin gets set to true, else the switch never gets changed. NOTE: the indexOf() returns where (and if) the string "plugin" was found in navigator.plugin[i].name, else the value is -1
*/

for (i = 0; i < navigator.plugins.length; i++) {
 if (navigator.plugins[i].name.indexOf(plugin) >= 0) hasPlugin = true;
}

if (hasPlugin) document.write("You have the " + plugin + " plug-in");
else document.write("Sorry, you don't have the " + plugin + " plug-in");

</SCRIPT>

Sounds on RollOvers

If you pet Clarus she will moof for you!
<SCRIPT>

/* plays sound send to it, in this case "moof" */

function playSound(SName) {
 /* does the sound file exist && (and) is the "sound" ready and available for playing */
 if (document.embeds[SName] != null && document.embeds[SName].IsReady()) {
 /* plays the sound, the false parameter makes sure that the sound only plays once */
 document.embeds[SName].play(false);
 document.mySound.setvol(100);
 }
}

</SCRIPT>

NOTE: OnMouseover plays the "moof" audio.

<!--
MASTERSOUND is a required attribute whenever you use a named sound.
AUTOSTART="FALSE" means that the sound won't start by itself when the page is loaded. HIDDEN="TRUE" makes sure that LiveAudio doesn't display its own built-in control panel, since the buttons below are our "control panel"
-->

<EMBED SRC="moof.au" NAME="moof"
 HIDDEN="TRUE" LOOP="FALSE" AUTOSTART="FALSE" MASTERSOUND>

Sound Controls

<SCRIPT>

/* This function plays the sound & the false parameter tells the script not to loop the sound, only play it once. */

function startSound() {
 document.mySound.play(false);
}
function pauseSound() {
 document.mySound.pause();
}
function stopSound() {
 document.mySound.stop();
}

/* Here we change the volume level. */
function changeVol(changeBy) {
 /* gets the value of the sound volume from the document and puts it into the currentVol */
 currentVol = document.mySound.GetVolume();
 /* we want to make sure that the volume is between the minimum & the maximum */
 if (currentVol >= 10 && currentVol <= 90) {
 /* if the volume isn't already at the minimum or the maximum
 then change the volume by +10 or -10 depending on the button pressed */
 document.mySound.setvol(currentVol + changeBy);
 }
}

</SCRIPT>

MASTERSOUND is a required attribute whenever you use a named sound.
AUTOSTART="NO" means that the sound won't start by itself when the page is loaded.
HIDDEN="TRUE" makes sure that LiveAudio doesn't display its own built-in control panel, since the buttons below are our "control panel"

<EMBED SRC="jurassic.wav" NAME="mySound"
 HIDDEN="TRUE" AUTOSTART="NO" MASTERSOUND>

<FORM>
 <INPUT TYPE="button" VALUE="Start" onClick="startSound();">
 <INPUT TYPE="button" VALUE="Pause" onClick="pauseSound();">
 <INPUT TYPE="button" VALUE="Stop" onClick="stopSound();">
 <INPUT TYPE="button" VALUE="Vol +" onClick="changeVol(+10);">
 <INPUT TYPE="button" VALUE="Vol -" onClick="changeVol(-10);">
</FORM>

LiveAudio and LiveConnect

LiveAudio is LiveConnect aware. This appendix describes how you use JavaScript to control embedded LiveAudio elements.

Using LiveConnect, LiveAudio, and JavaScript, you can:

· Create alternative sound control interfaces

· Defer the load of a sound file until the user clicks the "play" button

· Create buttons that make "clicking" noises

· Create audio confirmation for interface interactions; for example, have an object "say" what it does when the users clicks it or moves the mouse over it

Essentially, any event that can be described programmatically using the already rich JavaScript framework can trigger a sound event.

JavaScript Methods for Controlling LiveAudio

LiveAudio provides the following major JavaScript controlling methods. For these methods to be available to JavaScript (and the web page), you must embed a LiveAudio console (any console will do, it can even be hidden) somewhere on your page.

· play({loop[TRUE, FALSE or an INT]}, '{url_to_sound}')

· pause()

· stop()

· StopAll()

· start_time({number of seconds})

· end_time({number of seconds})

· setvol({percentage number - without "%" sign})

· fade_to({volume percent to fade to, without the "%"})

· fade_from_to({volume % start fade}, {volume % end fade})

· start_at_beginning()

· stop_at_end()

The following JavaScript state indication methods do not control the LiveAudio plug-in, but they give you information about the current state of the plug-in:

· IsReady

· IsPlaying

· IsPaused

· GetVolume

Using the LiveAudio LiveConnect Methods

One example of using JavaScript to control a LiveAudio plug-in is to have JavaScript play a sound. In the following example, all of the HTML is needed to make the plug-in play a sound.

<BODY>

<EMBED SRC="sound1.wav" HIDDEN=TRUE>

Play the sound now!

</BODY>

The preceding method of playing a sound file is probably the simplest, but can pose many problems. If you are using the document.embeds array, Navigator 2.0 will generate an error, because the embeds array is a Navigator 3.0 feature. Rather than use the embeds array, you can identify the particular <EMBED> tag you would like to use in JavaScript by using the NAME and MASTERSOUND attributes in your original <EMBED> tag, as follows:

<BODY>

<EMBED SRC="sound1.wav"

 HIDDEN=TRUE

 NAME="firstsound"

 MASTERSOUND>

Play the sound now!

</BODY>

This is a much more descriptive way to describe your plug-in in JavaScript, and can go a long way towards eliminating confusion. If, for example you had several sounds embedded in an HTML document, it may be easier for developers to use the NAME attribute rather than the embeds array. In the preceding example, notice that the MASTERSOUND attribute in the <EMBED> tag is used. This is because any time a NAME attribute is used referencing LiveAudio, an accommodating MASTERSOUND tag must be present as well.

Another common example of using LiveConnect and LiveAudio is to defer loading a sound until a user clicks the "play" button. To do this, try the following:

<HEAD>

<SCRIPT LANGUAGE="JavaScript">

function playDeferredSound() {

 document.firstsound.play(false,

 'http://url_to_new_sound_file/sound1.wav');

}

</SCRIPT>

</HEAD>

<BODY>

<EMBED SRC="stub1.wav" HIDDEN=TRUE NAME="firstsound" MASTERSOUND>

Load and play the sound

</BODY>

The stub file, stub1.wav, is loaded relatively quickly. (For a description of how to create a stub file, see the EmeraldNet LiveAudio information at http://emerald.net/liveaudio/.) The play method then loads the sound file only when it is called. Using this example, the sound file is loaded only when the user wants to hear it.

Web designers might want to create entire new interfaces with LiveConnected LiveAudio. To create an alternate console for sound playing and interaction, a designer might use the following example below:

<SCRIPT LANGUAGE="JavaScript">

function playSound() {

 document.firstSound.play(false);

}

function pauseSound() {

 document.firstSound.pause();

}

function stopSound() {

 document.firstSound.stop();

}

function volup() {

 currentVolume = document.firstSound.GetVolume();

 newVolume = (currentVolume + 10);

 if (document.firstSound.GetVolume() == 100) {

 alert("Volume is already at maximum");

 }

 if (newVolume < 90) {

 document.firstSound.setvol(newVolume);

 }

 else

 {

 if ((newVolume <= 100) && (newVolume > 90)) {

 document.firstSound.setvol(100);

 }

 }

}

function voldown() {

 currentVolume = document.firstSound.GetVolume();

 newVolume = (currentVolume - 10);

 if (document.firstSound.GetVolume() == 0) {

 alert("Volume is already at minimum");

 }

 if (newVolume > 10) {

 document.firstSound.setvol(newVolume);

 }

 else {

 if ((newVolume >= 0) && (newVolume < 10)) {

 document.firstSound.setvol(0);

 }

 }

}

</SCRIPT>

</HEAD>

<BODY>

<EMBED SRC="sound1.wav" HIDDEN=TRUE AUTOSTART=FALSE NAME="firstSound"

 MASTERSOUND>

<P>Play the sound now!</P>

<P>Pause the sound now!</P>

<P>Stop the sound now!</P>

<P>Increment the Volume!</P>

<P>Decrement the Volume!</P>

The preceding example illustrates how you might create your own method of controlling a sound file. The possibilities are really endless; you can use images and onClick event handlers to simulate your own sound player.

Copyright © 1997 Netscape Communications Corporation

Simple Java Example

Top of Form

Bottom of Form

<APPLET CODE="HelloWorld.class" NAME="HelloWorld"
 WIDTH="150" HEIGHT="25">
</APPLET>

<FORM NAME="newString">
 <INPUT TYPE="text" NAME="str">

 <INPUT TYPE="button" VALUE="Set String"
 onClick="document.HelloWorld.setString(document.newString.str.value)">
</FORM>

HelloWord Applet Code

import java.applet.Applet;

import java.awt.Graphics;

public class HelloWorld extends Applet {

 String myString;

 public void init() {

 myString = new String("Hello, world!");

 }

 public void paint(Graphics g) {

 g.drawString(myString, 5, 17);

 }

 public void setString(String aString) {

 myString = aString;

 repaint();

 }

}

If this is the first applet in the document (topmost on the page), you can refer to it in JavaScript in any of the following ways:

· document.HelloWorld

· document.applets["HelloWorld"]

· document.applets[0]

The applets array has a length property, document.applets.length, that indicates the number of applets in the document.

All public variables declared in an applet, and its ancestor classes and packages are available in JavaScript. Static methods and properties declared in an applet are available to JavaScript as methods and properties of the Applet object. You can get and set property values, and you can call methods that return string, numeric, and Boolean values.

Modifying a "Java Clock" through JavaScript dynamically

This page is a partial lift from a full article that can be found at The Java/JavaScript Connection. This article demonstrates and explains by example how JavaScript & Java interact in terms that even a "non-programmer" should readily understand.

Below is a simple digital clock Java applet. Two buttons summon the stop() and start() methods of the applet.

Now we'll see how these buttons can invoke the applet's methods.

THE APPLET OBJECT
Any applet that is loaded in your document also becomes an object. In the JavaScript object hierarchy, an applet is contained by a document.

The HTML applet definition for the digital clock display above looks like this:

 <APPLET CODE="ScriptableClock.class" NAME="clock1"
 HEIGHT=45 WIDTH=500>

 <PARAM NAME=fontSize VALUE=20>

 <PARAM NAME=fgColor VALUE="Red">

 </APPLET>
Compiled Java applets are saved with the filename extension .class, so the CODE attribute points to that applet class file. Some applets let the HTML author set some initial values by way of one or more <PARAM> tags. Each parameter has a name (as defined in the Java applet code); the value is the setting given to the applet as it initializes itself. Without LiveConnect, such parameters cannot be modified from JavaScript or HTML once the applet loads; but with LiveConnect, an applet can be designed to accept modifications from JavaScript while the applet runs.

To communicate with the applet begin with the document object, followed by a reference to the applet (either by name or its position in the document.applets[i] array), and then either the variable name or the method name (with parentheses and possibly parameters to be passed to the applet). Here, then, are the structures of references to applet items:

 document.appletName.varName
 document.appletName.methodName(parameters)

 document.applets[i].varName
 document.applets[i].methodName(parameters)

In the HTML code that loaded the digital clock applet above, the name clock1 was assigned to the applet. The pause button's onClick= event handler calls a JavaScript function named pauseClock(). Here is that function's JavaScript code:

 function pauseClock() {

 document.clock1.stop()

 }

The function called by the Restart button is as follows:

 function restartClock() {

 document.clock1.start()

 }

These two functions simply invoke public methods defined in the applet's Java code.

MODIFYING AN APPLET
Making the modifications usually entails studying the source code and the instance variables that define the properties of the applet. Then add public methods that read or write those variable values, depending on what your scripts need the applet to do.

Here is another instance of the same clock applet we saw above (this time named clock2). Below the clock are a bunch of HTML form elements that control numerous aspects of the display.

Top of Form

Select Time Zone: [image: image1.wmf]

Local Time

Select Background Color: [image: image2.wmf]

Black

Select Color Text Color: [image: image3.wmf]

Red

Select Font: [image: image4.wmf]

Times Roman

Select Font Style: [image: image5.wmf]

Plain

Select Font Size: [image: image6.wmf]

24

Bottom of Form

If you look at the applet source code, you'll notice a section of the code that contains several public methods added for scriptability. For example, one method sets the background and foreground colors in a single call:

 public void setColor(String newbgColor, String newfgColor) {

 bgColor = parseColor(newbgColor);

 fgColor = parseColor(newfgColor);

 }

The onChange= event handlers for both of the color select lists (named backgroundColor and foregroundColor, respectively) call a JavaScript function that sends both currently selected colors to the applet:

 function setColor(form) {

 var bg = form.backgroundColor.options[form.backgroundColor.selectedIndex].value

 var fg = form.foregroundColor.options[form.foregroundColor.selectedIndex].value

 // send data to applet

 document.clock2.setColor(bg, fg)

 }

Notice that the public method calls another method in the applet (a private method, intended for internal use by the applet). This leads to an important point. The applet could have been modified so that the bgColor and fgColor instance variables were public:

 public Color bgColor;

 public Color fgColor;

and the JavaScript statement to change any one color could have been more direct, as in:

 document.clock2.bgColor = form.backgroundColor.options[form.backgroundColor.selectedIndex].value

It can be hazardous, however, to adjust instance variables from outside the applet. It is possible, for instance, that the applet provides validation mechanisms for assuring the value is the correct data type and within the desired range before assigning a new value to that Java instance variable. That's what goes on in the setColor() method above. The new values are sent to an existing method (parseColor()) that makes sure the new color is one of the acceptable colors. If an incorrect parameter is passed, the parseColor() method at least makes sure that the instance variable has some valid data in it to keep the applet running smoothly.

Danny Goodman's 24th book is Danny Goodman's JavaScript Handbook. The author wishes to thank Dario Russi for his assistance in researching this article.
dynamictext.class

Note: This page is lifted from a Nick Heinle tutorial.

The dynamictext applet is embedded in this page, and connected it to JavaScript using a simple form. Enter some text, then press setText.

Not quite as exciting as the other three examples. The point is, however, that this can be made very simple or very elaborate. The first step in adding dynamictext, or any Java app to your site, is to embed it with the APPLET tag.

 <APPLET NAME = "dynamictextApp" CODE = "dynamictext.class"
 WIDTH = 200 HEIGHT = 25>

 <PARAM NAME = "x_pos" VALUE = "2">

 <PARAM NAME = "y_pos" VALUE = "15">

 <PARAM NAME = "center" VALUE = "0">

 <PARAM NAME = "fontface" VALUE = "TimesRoman">

 <PARAM NAME = "fontsize" VALUE = "16">

 <PARAM NAME = "fontcolor" VALUE = "0,0,0">

 <PARAM NAME = "bgcolor" VALUE = "255,255,255">

 </APPLET>

The name of the dynamictext class file, while contains the compiled Java code, is "dynamictext.class". The dynamicText app has eight initial parameters; all must be included for it to work. The first two, "x_pos" and "y_pos" control the placement of the text (in pixels) in relation to the upper left hand corner of the applet. The next, "center", determines if the text will be centered. Setting this to "1" will center the text, anything else will just be ignored.

The next three; "fontface", "fontsize", and "fontcolor", speak for themselves. The only thing that you should note is that the color of the font is done in RGB, as opposed the hex (00, FF etc.). The values for each color, which are between 0 and 255, must be in this form: "rrr, ggg, bbb". For instance, if I want straight blue text, I'd use this RGB color in the "fontcolor" parameter : "0,0,255". The same rule applies to the "bgcolor" parameter, which controls the color of the applet's background.

Now on to the fun part: controlling the applet throught JavaScript. Referring to an applet in JavaScript is very easy, just use its name (The name paramter in the APPLET tag specifies the name). In this case, I can referr to the dynamicText applet like this: "document.dynamictextApp". The dynamicText applet has a group of Methods, which are very similar to functions, that allow JavaScript to control what's happening in the applet. The first and foremost is the setText() Method, which allows you to change the text that the applet is displaying. To do this, simply pass setText() a string of text:

 document.dynamictextApp.setText("Some Text");

This would display "Some Text" in the dynamicText applet window. There are a number of other things that can be changed on the fly using JavaScript, and here they are:

Font Size: must be an integer. This would be size 12 pt:

 document.dynamictextApp.setfSize(12);

Font Color: must be in the RGB format. This would be red:

 document.dynamictextApp.setfColor("255,0,0");

Height and Width positioning: This would be 10 pixels down, 10 pixels over left:

 document.dynamictextApp.setXY(10,10);

How about a few more for practice? Let's make the font color a light grey, change the font size to 24, and make the text say, "I am the text.":

 document.dynamictextApp.setfColor("190,190,190");

 document.dynamictextApp.setfSize(24);

 document.dynamictextApp.setText("I am the text.");

_1044042968.unknown

_1044042969.unknown

_1044042965.unknown

_1044042967.unknown

_1044042964.unknown

_1044042963.unknown

