onChange & Select

Play with this example and then read the blow-by-blow description below it:

My favorite animal is ...

Top of Form

 HTMLCONTROL Forms.HTML:Select.1 [image: image1.wmf]

poodle

Bottom of Form

This is a fairly complicated JavaScript, so let's go through it slowly. First, let's look at the form itself.

<FORM NAME="theForm">
 <SELECT NAME="chooseCat"
 onChange="swapOpts(this.options[selectedIndex].text);">
 <OPTION>dogs
 <OPTION>fish
 <OPTION>birds
 </SELECT>
 <SELECT NAME="examples">
 <OPTION>poodle
 <OPTION>puli
 <OPTION>greyhound .
 </SELECT>
</FORM>

This form has two elements, a pulldown select and a list select. The pulldown select has an onChange handler that calls a function called swapOpts(). swapOpts(), which is defined in the header, has one parameter - the selected animal type.

Now let's check out the header. The first thing that happens is I define a few arrays:

var dogs = new Array("poodle","puli","greyhound");
var fish = new Array("trout", "mackerel", "bass");
var birds = new Array("robin", "hummingbird", "crow");

Notice that the arrays are named the same thing as the animals in the pulldown select. You'll see why soon. Now let's look at the function that gets called when the pulldown select is changed:

function swapOpts(ArrayName) {
 var ExSelect = document.theForm.examples;
 var theArray = eval(ArrayName);

 setOptionText(ExSelect, theArray);
}

The function definition includes one parameter: ArrayName. If you pulled the pulldown select to "fish," ArrayName will equal the string "fish."

The first line in the body of the function sets a variable to refer to the second form element, the list select.

The end result of the second line is that the variable theArray will equal one of the arrays defined earlier. If the ArrayName is "Fish," theArray will equal the Fish array.

The third line of the function calls another function called setOptionText(). setOptionText() does the work of setting the values of the list select to the contents of theArray. Here it is:

function setOptionText(ExSelect, theArray) {
 for (loop = 0; loop < ExSelect.options.length; loop++) {
 ExSelect.options[loop].text = theArray[loop];
 }
}

This function takes two parameters, a reference to a select element and an array. The first line of the function sets up a for loop, which loops through all the options in the select element. Remember that the options property of a select element is an array of all that select's options. Because it's an array, you can find out how many options are in a select using the length property of arrays. That's how the loop works.

The first time you hit the loop, the loop variable equals 0. The body of the loop then reads:

ExSelect.options[0].text = theArray[0];

If you chose "Fish" in the pulldown, theArray[0] will be "trout," so this line will change the first option in the list select to "trout." The next time through the loop, loop will equal 1, and the second option in the list select will equal "mackerel."

There's one caveat to all this. When you change the text of an option, the size of the select won't change. So if you change an option's text to something really long, it'll probably get cut off.

MultiDimensional Arrays

What happens if the elements of an Array object are arrays themselves? The results is an Array of Arrays, also called a 2-dimensional array. This nesting of Arrays within arrays can go on for three, four, or more dimensions.

A 2-dimensional Array could, for example, be used to store sales statistics for 3 regions in 4 different Months:

var monthName = new Array("Jan.", "Feb.", "Mar.", "Apr.");
var regionName = new Array("North", "Central", "South");

var Jan = new Array(100, 120, 180);
var Feb = new Array(110, 90, 150);
var Mar = new Array(100, 115, 190);
var Apr = new Array(105, 115, 175);

var sales = new Array(Jan, Feb, Mar, Apr);

The month and region titles are assigned to 2 Arrays -- monthName and regionName. The four Arrays -- Jan, Feb, Mar, and Apr -- each contain 3 Sales Numbers, one for each Region. Finally, we combine all four into a single Array called sales.

var m, r;

document.write("<TABLE><TR><TH> Month </TH>");
for (r = 0; r < 3; r++) {
 document.write("<TH>" + regionName[r] + "</TH>");
}
document.write("</TR>");

This begins by declaring two variables, m and r. Then we write the word Month in the first cell of the table, followed by the 3 Region names. A for loop is used to loop around and display the contents of the regionName Array, one element in each cell of the top row.

for (m = 0; m < 4; m++) {
 document.write("<TR><TH>" + monthName[m] + "</TH>");
 for (r = 0; r < 3; r++) {
 document.write("<TD>" + sales[m][r] + ",</TD>"); // 2-dimensional array
 }
 document.write("</TR>");
}
document.write("</TABLE>");

This uses the nested for loops. The outer loop uses the variable m to step through all the months, writing the month names -- stored in the monthName Array -- in the first column. The inner loop uses the variable r to enter the data from the sales array into the appropriate rows.

 document.write("<TD>" + sales[m][r] + "</TD>"); // 2-dimensional array

This contains the expression sales[m][r], which represents the m'th element of the r'th element of sales. The double index ([m][r]) is how JavaScript accesses an element of an element. For example, where m = 0 and r = 3, JavaScript looks at the 1st Array stored in sales (the Jan Array), then looks at the 3rd element stored within that Array (180).

	Month
	North
	Central
	South

	Jan.
	100
	120
	180

	Feb.
	110
	90
	150

	Mar.
	100
	115
	190

	Apr.
	105
	115
	175

Double Combination

Top of Form

[image: image2.wmf]

Technology Sites

 HTMLCONTROL Forms.HTML:Select.1 [image: image3.wmf]

CNET

Bottom of Form

// create a temporary "shortcut"
var form = document.dualmenus
// how many options are there?
var groups = form.sites.options.length;
// create a new array with that many elements
var group = new Array(groups);

// for each array element created above
// create a new array of unspecified length for that array element
for (i = 0; i < groups; i++) group[i] = new Array();

// Option Objects can be created dynamically with the Option() constructor
// new Option(text, value, defaultSelected, selected)
group[0][0] = new Option("CNET", "http://www.cnet.com");
group[0][1] = new Option("News.com", "http://www.news.com");
group[0][2] = new Option("Wired News", "http://www.wired.com");

group[1][0] = new Option("CNN", "http://www.cnn.com");
group[1][1] = new Option("ABC News", "http://www.abcnews.com");

group[2][0] = new Option("Hotbot", "http://www.hotbot.com");
group[2][1] = new Option("Infoseek", "http://www.infoseek.com");
group[2][2] = new Option("Excite", "http://www.excite.com");
group[2][3] = new Option("Lycos", "http://www.lycos.com");

var Links = form.links; // create a temporary "links" shortcut

function redirect(index) {
 // "null out" all the options associated with the links menus
 for (m = Links.options.length - 1; m > 0; m--) Links.options[m] = null;
 // fill up the links options with the appropriate text & values from the above 2D arrays
 for (i = 0; i < group[index].length; i++) {
 Links.options[i] = new Option(group[index][i].text, group[index][i].value);
 }
 // make the first links option the selected item
 Links.options[0].selected = true;
}

function go2() {
 location.href = Links.options[Links.selectedIndex].value
}
Configuring the script: The first thing you'll need to do is change the contents of the first selection list to reflect the "main categories" you'll want to use. Below shows the code pertaining to that:

<FORM NAME="dualmenus">
 <SELECT NAME="sites" onChange="redirect(this.selectedIndex);">
 <OPTION>Technology Sites
 <OPTION>News Sites
 <OPTION>Search Engines
 </SELECT>

Change the text in read, add in more <OPTION> tags etc.

Next, you need to define (using HTML) the links associated with the first category. The code for this looks like this:

 <SELECT NAME="links">
 <OPTION VALUE="http://www.cnet.com">CNET
 <OPTION VALUE="http://www.news.com">News.com
 <OPTION VALUE="http://www.wired.com">Wired News
 </SELECT>
 <INPUT TYPE="button" VALUE="Go!" onClick="go2();">
</FORM>

Change those to reflect the links associated with your first category. Add in more <OPTION> tags if necessary.

In the demo above, we know that it contains 3 categories, the first one with 3 links, the second one with 2 links, and the third with 4 links. These links are contained as 2-D Array elements:

group[0][0] = new Option("CNET", "http://www.cnet.com")
group[0][1] = new Option("News.com", "http://www.news.com")
group[0][2] = new Option("Wired News", "http://www.wired.com")

group[1][0] = new Option("CNN", "http://www.cnn.com")
group[1][1] = new Option("ABC News", "http://www.abcnews.com")

group[2][0] = new Option("Hotbot", "http://www.hotbot.com")
group[2][1] = new Option("Infoseek", "http://www.infoseek.com")
group[2][2] = new Option("Excite", "http://www.excite.com")
group[2][3] = new Option("Lycos", "http://www.lycos.com")

The text in red represent the text of each selection, and its associated URL, respectively. Since we have three categories in our demo, we have three groups of link. Obviously, your combo will not necessarily follow this structure, so its important to know how to set up the variables accordingly.

group[0][0] = new Option("JavaScript Site", "http://www.JavaScript.com")

The blue 0 indicates which category the variable belong to (0 = first, 1 = second etc), and the red 0 indicates the variable's position within the category.

Form Object
By using the form you have at your disposal information about the elements in a form and their values. You can alter many of these of these values as needed.

A separate instance of the form object is created for each form in a document. Objects within a form can be referred to by a numeric index or be referred to by name.

<FORM
 [NAME="formName"]
 [TARGET="frameName or windowName"]
 [ACTION="CGI path"]
 [METHOD="GET | POST"]
 [ENCTYPE="MIMEType"]
 [onSubmit="handlerText Or Function"]
 [onReset="handlerText Or Function"]>
</FORM>

Properties of the Form Object
	PROPERTY
	DESCRIPTION

	ACTION
	String containing the value of the ACTION attribute of the FORM tag

	elements[]
	Array containing an entry for each element in the form (such as checkboxes, text field, and selection lists)

	ENCODING
	String containing the MIME type used for encoding the form contents sent to the server. Reflects the ENCTYPE attribute of the FORM tag

	length
	The number of elements in the form. Equivalent to elements.length.

	METHOD
	Specifies the technique for submitting the form. Values: GET or POST

	NAME
	String containing the value of the NAME attribute of the FORM tag

	TARGET
	String containing the name of the window targeted by a form submission

PROPERTIES

ACTION
With this property, you can ascertain the action specified in the form definition. For instance, in a form defined with the following:

<FORM METHOD="POST" ACTION="/cgi-bin/test.pl">

the ACTION property has a value of "/cgi-bin/test.pl".

ENCODING
The encoding property reflects the MIME type, which is used to encode the data submitted from a form to the server. This means that the property reflects the ENCTYPE attribute of the FORM tag, and you can set the encoding of a form by changing the value of this property.

The default value is "application/x-www-form-urlencoded" which is sufficient for almost all purposes. For example, a value "text/plain" is convenient when the FORM is being submitted by email to mailto:URL
This is useful when you want to upload a file to be processed by a CGI script on the server. For information go to http://www.ics.uci.edu/pub/ietf/html/rfc1867.txt.

METHOD
A read/write string that specifies the technique for submitting the form. It should have the value "GET" or "POST". Initially specified by the METHOD attribute.

<FORM METHOD="POST" ACTION="/cgi-bin/test.pl">

NAME
This property provides the programmer with the name specified in the form definition. In the form defined with the

<FORM NAME="myForm" METHOD="POST" ACTION="/cgi-bin/test.pl">

the name property has a value of "myForm".

TARGET
The target property is similar to the action and name properties and makes the content of the TARGET attribute available to the programmer. A read/write string that specifies the name of the frame or window in which the results of submitting a form should be displayed. Initially specified by the TARGET attribute. The special name "_top", "_parent", "_self", and "_blank" are also supported for the target property and the TARGET attribute (more of this will be covered in Week 8). In the FORM definition

<FORM NAME="myForm" TARGET="thatFrame" METHOD="POST" ACTION="/cgi-bin/test.pl">

the target property has a value of "thatFrame".

It is possible to dynamically change the target of a form by assigning a new value to the target property. In the preceding example, the target could be changed from thatFrame to anotherFrame by using document.myForm.target="anotherFrame".

METHODS

There is only one method available with the form object: submit().

Form Handlers

Forms are Objects; they have their own Methods, Properties, and Event Handlers. One Event Handler that you should know about is onSubmit.

onSubmit can called in one of 3 ways:

· by the user pressing Enter (Return) in a text field, or

· if a user clicks on a Submit button, or

· by using the submit() method.

If these actions are not handled in some way, your JavaScript may behave differently than expected. Try clicking on Submit below and see what happens. Also checkout the URL Address, what do you notice?

<FORM>
 <INPUT TYPE="submit" VALUE="Submit">
</FORM>

Top of Form

Bottom of Form

Clicking on an un-handled Submit button generally leads to reloading the page. In general, you won't want this. In order to block this behavior, you need to do this:

<FORM onSubmit="return false;">
 <INPUT TYPE="submit" VALUE="Submit">
</FORM>

Top of Form

Bottom of Form

Generally, return false is a way that JavaScript stops your browser from doing what it would otherwise do. Another example of this is stopping an href from going to the URL assigned to it. For example, the link

JavaScript!

won't go anywhere because you've returned false on the onClick. Click on this dead link, if you don't believe me.

<A HREF="javascript:txtbox()"
 onMouseOver="status='Dead Link Demo'; return true;"
 onMouseOut="status='';">
Click on this dead link & see what happens

Click on this dead link & see what happens
This may seem like a weird thing to do, but actually it's quite common, especially in the case of forms. Here's an example of using a form to get input from a user. Type something into this text field and hit Enter (Return):

Top of Form

Let's see what happens: [image: image4.wmf]

Bottom of Form

Here's the form:

<FORM NAME="txtEntryForm" onSubmit="txtbox(this); return false;">
 Let's see what happens:
 <INPUT TYPE="text" NAME="textbox">
</FORM>

When you hit Enter (Return) in the text field, the onSubmit Handler gets called. It executes the function txtbox(), which changes the value in the text field.

If the return false wasn't in the onSubmit Handler, the function txtbox() would execute, changing the text field, but then the page would reload, changing the text field back to what it was. To stop this from happening, you need to have that return false in the onSubmit.

function txtbox(form) {
 var ItIs = form.textbox.value;
 ItIs = 'blahblahblah ' + ItIs;
 form.textbox.value = ItIs;
}

Click on this "non"-dead link & see what happens
And here's an example of the same form without the return false, just so you can see what happens:

Top of Form

Let's see what happens: [image: image5.wmf]

Bottom of Form

Hopefully, you've convinced yourself of the merits of return false.

Form Validation Overview

<FORM
 NAME="vForm"
 METHOD="POST"
 ACTION="formmail.pl"
 onSubmit="return ValidateInput(this)">

METHOD (GET & POST) and ACTION will be discussed and demonstrated in Week 6.

There are two ways we can do Form Validation:

· Server-side

· Client-side

Server-side Validation Process

In the Server-side Validation process when the User Submits the Form, "all" the information is passed to server, the server in turn "passes" this information to a CGI which then will process the Form's Information. If the Validation "Tests" are not all passed then the CGI sends an "alert" message back to the User (back through the server) informing the User where the problems are.

It is obvious that Server-side Validation process presents us with quite a few problems:

1. The Form's Information must be passed back to the server - clogging the network

2. The server then must "pass" the information to the CGI

3. The CGI must process the information - using valuable server resources

4. The CGI then will send back (back through the server) to the User the error messages

It should be quite obvious the whole process takes quite a bit of time. We can see that we should avoid Server-side Validation whenever possible.

Client-side Validation

Client-side Validation avoids all the problems associated with Server-side Validation. NOTE: There are occasions when Server-side Validations are necessary, for example, having to do Database lookups.

The onSubmit is an Event Handler associated with the Submit Action. With the setup above (onSubmit="return ValidateInput(this)) when you press the Submit Button the Event Handler onSubmit will be initiated. In this particular case there are two parts:

· Call a Function to process the Form's Information - to Validate the Information

· return either a true or false based on the "Validation Process"

The function ValidateInput(this) is where the Form Validation process is occurring. Based on the "validation" process either a false or a true will be returned. A true will only be returned if the Form Information passes all the Validation "tests". If not all the Validation "tests" are passed then a false will be returned.

The normal response for a Submit would be to take "all" the Information from the Form and pass that information to server. Remember from the Form Handlers Section, a return false is a way for JavaScript to stop your browser from doing what it would otherwise do. This procedures prevents us from sending the Form's Information until it has passed all the Validation "tests".

NOTE: How that information gets passed to server is specified by the METHOD.

True/False Question form

Top of Form

1. George Washington was the first president of the United States. [image: image6.wmf]

True [image: image7.wmf]False
2. Tucson is the capital of Arizona. [image: image8.wmf]True [image: image9.wmf]False
3. Guam is an island in the Caribbean. [image: image10.wmf]True [image: image11.wmf]False
4. JavaScript is easier to learn than Java. [image: image12.wmf]True [image: image13.wmf]False
5. Mhz refers to how much memory a computer has. [image: image14.wmf]True [image: image15.wmf]False

[image: image16.wmf]

Get

S

core

 HTMLCONTROL Forms.HTML:Reset.1 [image: image17.wmf]Clea

r

Bottom of Form

<SCRIPT>

function tester(form) {
 var percent;
 var correct = 0;

 if (form[0].checked == true) correct++;
 // OR if (form.No1[0].checked == true) correct++;
 if (form[3].checked == true) correct++;
 // OR if (form.No2[1].checked == true) correct++;
 if (form[5].checked == true) correct++; // etc...
 if (form[6].checked == true) correct++;
 if (form[9].checked == true) correct++;

 percent = (correct / 5) * 100;

 if (percent == 100) alert("You got a " + percent + "%. Great Job!");

 if (percent < 100)
 alert("You got " + correct + " out of 5 correct (" + percent + "%)");
}

</SCRIPT>

When the Submit button get pressed the onSubmit Event Handler is initiated. onSubmit calls the function tester(this) and also has a return false which causes "nothing" to happen. In other words, return false overwrites the default behavior of submitting the Form's Information to the server.

<FORM onSubmit="tester(this); return false;">

1. George Washington was the first president of the United States.
<INPUT TYPE="radio" NAME="No1">True <= Correct form[0] or No1[0]
<INPUT TYPE="radio" NAME="No1">False

2. Tucson is the capital of Arizona.
<INPUT TYPE="radio" NAME="No2">True
<INPUT TYPE="radio" NAME="No2">False <= Correct form[3] or No2[1]

3. Guam is an island in the Caribbean.
<INPUT TYPE="radio" NAME="No3">True
<INPUT TYPE="radio" NAME="No3">False <= Correct form[5] or No3[1]

4. JavaScript is easier to learn than Java.
<INPUT TYPE="radio" NAME="No4">True <= Correct form[6] or No4[0]
<INPUT TYPE="radio" NAME="No4">False

5. Mhz refers to how much memory a computer has.
<INPUT TYPE="radio" NAME="No5">True
<INPUT TYPE="radio" NAME="No5">False <= Correct form[9] or No5[1]

<INPUT TYPE="Submit" VALUE="Get Score">
<INPUT TYPE="Reset" VALUE="Clear">

JavaScript Regular Expression

Regular Expressions are a powerful tool used in pattern-matching and substitution. They are commonly associated with almost all UNIX-based tools, including editors like vi, scripting languages like Perl and PHP, and Shell programs like awk and sed. And now they finally also exist in JavaScript.

A Regular Expression lets you build patterns using a set of special characters. Depending on whether or not there's a match, appropriate action can be taken, and appropriate program code executed.

For example, Form Validation is one of the most common requirements. You don't know what exact values the user will enter, but you do know the format they need to use. A Regular Expression is a way of representing a pattern you are looking for in a string.

RegExp Syntax

var myRegExp = /pattern/[switch]

In a Regular Expression /pattern/ is a Regular Expression and [switch] (optional) indicates the mode in which the Regular Expression is to be used:

"i" - ignore case,
"g" - global search,
"gi" - global search + ignore case (case-insensitive).

After a Regular Expression is created, it is passed to a Method of a String Object.

RegExp Quantifiers - "meta-characters"

How about something a little more complex? Well, we can use "meta-characters", special characters, that have a special meaning when used within a pattern.

"+" is used to match one or more occurrence of the preceding character. So,

/bo+/

would match the words "bore", "boom", and "bookstore".

"*" is used to match zero or more occurrences of the preceding character. So,

/mat*/

would match "ma", "mat" and "matter".

"?" are used to match zero or one occurrence of the preceding character. So,

/smit?/

would match "smirk", "smile" "smith" and "smitten", though not "smear" or "smelt".

"{x, y}" is used match a range. So,

/mo{2,6}/

would match "smooth" and "smooooooth!", but not "moth". The numbers in the curly braces represent the lower and upper values of the range to match. NOTE: you can leave out the upper limit for an open-ended range match.

RegExp Special Characters

It's also possible to search for whitespace, numbers and alphabetic characters with a Regular Expression. The following lists these special characters:

\s = used to match a single whitespace character, including tabs and newline characters
\S = used to match everything that is not a whitespace character
\d = used to match numbers from 0 to 9
\w = used to match letters, numbers and underscores
\W = used to match anything that does not match with \w
. = used to match everything except the newline character

OK, the famous question -- how do I use them?!". Well, suppose you wanted to find all the whitespace in a document...

/\s+/

That wasn't hard, right? What if you're looking only for numbers, you might try

/\d/

How about limiting your search to the beginning or end of a string? Well, that's why we have "pattern anchors" -- these simply tie your Regular Expression to either the first or last character of the string, and come in very useful when you're looking for a way to filter through a mass of matches.

-- Pattern Anchors (^, $) --
[^] caret is used to indicate that the expression should be matched only at the beginning of the string that it is applied to. So,

/^script/

will return a match only if it finds a word beginning with "script" -- "scripting" and "scripts", but not "javascript".

"$" anchor is used to match the end of a string. So,

/ar$/

would match "scar", "car" and "bar", but not "art", "army" or "arrow".

There's also a simpler way to add pattern anchors to your expression -- the \b. This is used to check that the RegExp matches the boundary of a string, and it can be placed either at the beginning or end of the pattern to be matched. So,

/\bhom/

would match both "home" and "homestead", while

/man\b/

would match "human", "woman" and "man", though not "manor" or "manners". And the converse of this is \B, which matches everywhere but at the boundaries of a string.

Examples of RegExp Special Characters:

1. "Charles the Brit raced his moped through the park."

2. "The Park Ranger watched Charles do this."

var reg1 = /^Charles/;
 // "Charles" on line 1 but not line 2
var reg2 = /his$/;
 // "this" on line 2 but not "his" on line 1
var reg3 = /\bt/;
 // " the" and " through" but not "Brit" or "watched"
var reg4 = /\Bt/;
 // "Brit" or "watched" but not " the" or " through"
var reg5 = /t\s./;
 // "Brit raced" but not "watched"
var reg6 = /t\S./;
 // "watched" but not "Brit raced"
var reg7 = /th./;
 // "through", "the", and "this"

RegExp "Group Matching"

Just as you can specify a range for the number of characters to be matched, you can also specify a range of characters. For example, the range

/[A-Z]/

would match a single instance of all upper-case alphabetic characters, while

/[a-z]/

would match all lowercase letters, and

/[0-9]/

would match all numbers between 0 and 9.

Using these three ranges, it's pretty easy to create a Regular Expression to match an alphanumeric field.

/([a-z][A-Z][0-9])+/

would match a string that was purely alphanumeric in nature, like "aB0" - although not "abc". NOTE the parentheses around the patterns, they come in handy when grouping sections of a Regular Expression together.

Choice is very important when building Regular Expressions -- as in most other languages, it's possible to use the pipe [|] operator to indicate multiple options in a RegExp. For example,

/dos|two|zwei/

would match any one of the three strings "dos", "two" and "zwei". This obviously comes useful when building expressions that have many possible variants.

You can also invert the regular sense of a Regular Expression with the negation operator, represented by ^. So,

/[^A-C]/

would match everything but that which appears in the expression - namely, everything except the letters "A", "B" and "C".

NOTE: when ^ is used in a bracketed expression it is used to invert the match. When ^ it is used outside a bracketed expression it serves as a pattern anchor.

And finally, one important thing to remember when you add any of the meta-characters described above to your pattern and explicitly match them, you need to "escape" then with a back slash [\]. So, the pattern

/Th*/

would match "Th*" but not "The" - the * ensures that the asterisk is matched as a literal character, not a meta-character.

Examples of RegExp "Group Matching":
var reg1 = /[lmw]ink/;
 // matches "link", "mink" and "wink"
var reg2 = /[^lmw]ink/;
 // matches "dink", "fink", "pink", etc...,

 // but not "link", "mink" or "wink"
var reg3 = /[a-s]ink/;
 // matches "link", "mink", etc ..., but not "wink"
var reg4 = /[^t-z]ink/;
 // matches "link", "mink", etc ..., but not "wink"

var reg1 = /^([1-9]|1[0-2]):[0-5]\d$/;
 // matches proper time values
var reg2 = /['"]/d/d/d['"]/;

 // matches a three digit number in quotes

Regular Expression Methods

So far we've only really covered pattern matching, so what do you do with them? The Regular Expression Methods allow us to use pattern matching to do useful things like searching, matching, and replacing information.

RegExp Methods: 1) exec() & 2) test()

String Object Methods (that work with Regular Expressions):

· match(), replace(), search(), & split()

NOTE: A RegExp Object is automatically created when you assign a string pattern to a variable.

str.search()
The String Object's search() Method is the simplest of all the operations.

var str = "96521234";

var reg1 = new RegExp("965");
var reg2 = /123/;
var reg3 = /333/;

var index1 = str.search(reg1); // index1 = 0
var index2 = str.search (reg2); // index2 = 4
var index3 = str.search (reg3); // index3 = -1

search() simply looks through the String specified and returns to index the position of the first matching character sequence in the String.

NOTE: the String ignores the global switch 'g' in a Regular Expression literal and that this index value begins at 0 as line 4 demonstrates. If a match is not found, search() returns -1.

str.split()
The split() Method has been in the language since JavaScript 1.1, but with version 1.2 came support for it to take a regular expression argument.

var lgNum = "212,0,456,0,67889";
var reg = /,\d,/;
var numList = lgNum.split(reg); // numList = ["212", "456", "67889"]

split() takes a string and returns an Array of string elements. Each element exists in the original string separated by characters matching the pattern sent to split() as its argument.

str.replace()
The replace() Method returns a brand new string that contains a copy of the original string with any matching part of it replaced accordingly.

var str = "I'm happy. You're Happy";
var reg = /happy/gi;
var newStr = str.replace(reg, "sad"); // newStr = "I'm sad. You're sad"

NOTICE the use of the gi (global and case-insensitive) switches, without them newStr would be assigned "I'm sad. You're Happy".

The example below illustrates another feature of replace() that we can also make use of.

var str = "I am working. You are asleep";
var reg = /(I am)(\s\w*.\s)(You are)(\s\w*)/;
var newStr = str.replace(reg, "$3$2$1$4"); // newStr = "You are working. I am asleep"

NOTICE that $1 and $3 correspond to "I am" and "You are" respectively and are swapped accordingly by replace().

The RegExp Object has similar properties called $1, $2, etc… up to $9, equivalent to /1, etc… which can be fed back into replace().

str.match()
match(), is very similar to replace() except that instead of returning a new string, it returns an Array of matches to the global RegExp as a result.

In the case that the Regular Expression does not contain the global switch, the first element of the Array will always return the match for the complete expression while subsequent elements will hold $1, $2, etc.

var str = "I am working. You are asleep";
var reg = /(I am)(\s\w*.\s)(You are)(\s\w*)/;
var newArray = str.match(reg);

So in this example,

newArray[0] == "I am working. You are asleep",
newArray[1] == "I am",
newArray[2] == " working. "

etc....

reg.test()
test() is very similar to the search() Method. It simply returns returns true if there is a match or false if not.

var str ="96521234";
var reg = /965/;
var isIn = reg.test(str); // isIn = true

If the pattern has the global flag set, it will set the lastIndex Property of the RegExp Object and continue the search from that point in the string when called again.

NOTE: If it does not have the flag set, lastIndex will be reset to 0.

The code to validate the number you've been looking at would like this:

function validate(str) {
 var Digit = /\d/;

 if (!Digit.test(str)) alert("Please use only digits.");
}

It's much simpler than trying to do some indexOf()s and calculating the lengths of each bit.

reg.exec()
exec() acts in a way similar to match() when the global switch is not used.

var string = "965212234";
var reg = /(\d{2}2)/g; // two digits followed by a 2

var results = reg.exec(string); // Call 1 results in ["652", "652"]
var results = reg.exec(string); // Call 2 results in ["122", "122"]

exec() populates all the static properties of the RegExp Object, the reg Object and updates details of the Array too. exec() also behaves the same as test() with respect to the global flag being set. Should it not find a match, exec() returns null for the Array.
RegExp Examples

Patterns

For example, let’s say I want users to input 6 digits followed by a decimal and 4 more digits. A simple regular expression for my desired input would be:

/\d\d\d\d\d\d\.\d\d\d\d/

You can specify the number of times you expect something to appear by specifying a number in curly brackets. The pattern shown previously can be simplified like this:

/\d{6}\.\d{4}/

To create a regular expression object in JavaScript, you just assign a slash-delimited, unquoted pattern to a variable like this:

template = /\d{6}\.\d{4}/

To test to see if that pattern matches a particular string value, you can use the test method of the object, which returns true if there is a match or false if not. The code to validate the number you’ve been looking at would look like this:

function checkPattern(str) {
 var template = /\d{6}\.\d{4}/;

 if (!template.test(str)) { // Not True - so no match was found
 alert("Please use the Format :\n\n123456.1234");
 }
 else alert("The Pattern you entered is Correct!");
}

<INPUT TYPE="text" NAME="num">
<INPUT TYPE="button" VALUE="Show Me"
 onClick="checkPattern(form.num.value)">

Top of Form

Number Pattern (123456.1234): [image: image18.wmf]

123456.123

Bottom of Form

It’s much simpler than trying to do some indexOfs and calculating the lengths of each bit, isn’t it?

Varying Patterns

Now, let’s say that you know there will be between 4 and 6 digits before the decimal and at least 2 after it. That regular expression would look like this:

/\d{4,6}\.\d{2,}/

You can also allow multiple regular expressions in one test by using the | operator to OR them together. The following will match either a 6.2 or a 2.6 construction.

/\d{6}\.\d{2}|\d{2}\.\d{6}/

You can also specify a selection of values for a character using [] and - together.

 /[13-5]\d{6}\.\d{2}/

function matchFirst(str) {
 var template = /[13-5]\d{5}\.\d{2}/;

 if (!template.test(str)) { // Not True - so no match was found
 alert("The first number must be: 1, 3, 4, or 5");
 }
 else alert("The number you entered is Correct!");
}

<INPUT TYPE="text" NAME="num">
<INPUT TYPE="button" VALUE="Show Me"
 onClick="matchFirst(form.num.value)">

Please entered a number (6.2 and start with 1, 3, 4, or 5) [image: image19.wmf]

123456.12

The above will match on any 6.2 digit string that starts with one of the digits 1, 3, 4, or 5. The following code illustrates the negation operator, which in this case would match any 6.2 digit string that starts with any digit other than 1, 3, 4, or 5.
 /[^13-5]\d{5}\.\d{2}/

function checkFirst(str) {
 var template = /[^13-5]\d{5}\.\d{2}/;

 if (!template.test(str)) { // Not True - so no match was found
 alert("The first number can not be: 1, 3, 4, or 5");
 }
 else alert("The number you entered is Correct!");
}

<INPUT TYPE="text" NAME="num">
<INPUT TYPE="button" VALUE="Show Me"
 onClick="checkFirst(form.num.value)">

Please entered a number (6.2 and not starting with 1, 3, 4, or 5) [image: image20.wmf]

234567.12

"Remembering" Patterns

One of the best features of regular expressions is that they can remember which parts of the expression were matched. You can surround the parts of the regular expression you want to access later with (). Suppose you want to retrieve the values on the left and right sides of the decimal after test parses a string. That pattern would look like this:

/(\d{4,6})\.(\d{2,})/

This brings up another related subject. When you call the test method of a regular expression it creates a RegExp Object, which stores information relevant to that regular expression search. You can then use that Object to find the matched strings. This RegExp Object can recall up to 9 arguments that were indicated by parentheses.

For example, if the regular expression is - ^([0-9])([0-9])$ - and the input string is - 49 -, then the - RegExp.$1 - variable will hold the value - 4 - and - RegExp.$2 - will hold the value - 9 -. To retrieve the 2 values you’ve requested the Object to remember, use:

RegExp.$1 -- holds the value 4
RegExp.$2 -- holds the value 9

function remember(str) {
 var template = /^([0-9])([0-9])$/;

 if (template.test(str)) {
 alert('RegExp.$1 is ' + RegExp.$1);
 alert('RegExp.$2 is ' + RegExp.$2);
 }
}

<INPUT TYPE="text" NAME="num" VALUE="49">
<INPUT TYPE="button" VALUE="RegExp.$x"
 onClick="remember(form.num.value)">

Top of Form

[image: image21.wmf]

49

Bottom of Form

You can even use a remembered value within the regular expression itself by preceding the remembered match number with a backslash (like \1). You may know that a value repeats in a string, but the value itself could be different in each string. This code

/(\d{3})-\d{3}-\1/

would return true for both 987-353-987 and 455-319-455, indicating that the third field matched the first.

function checkTriplets(str){
 var template = /(\d{3})-\d{3}-\1/;

 if (!template.test(str)) { // Not True - so no match was found
 alert("The 1st and the 3rd triplets did not Match!");
 }
 else alert("The 1st and the 3rd triplets Match!");
}

<INPUT TYPE="text" NAME="triplets">
<INPUT TYPE="button" VALUE="Show Me"
 onClick="checkTriplets(form.triplets.value)">

Top of Form

Number Pattern (123-456-789): [image: image22.wmf]

123-456-123

Changing Patterns on the Fly

There is another way to create regular expression objects that can be particularly useful if you want to validate many different input values.

var template = new RegExp("pattern", ["options"])

This method of creating a RegExp object is good for changing the pattern. It means you can use one function for validation, and pass both the string and pattern as parameters. A simple function would look like this:

function validate(str, pattern) {
 var template = new RegExp(pattern);

 if (! template.test(str)) { // Failed
 alert("Pattern used : " + template.source);
 }
 else alert("Thank you for signing up!")
}

<INPUT TYPE="text" NAME="email">
<INPUT TYPE="button" VALUE="Show Me"
 onClick="validate(form.email.value, '^([a-z\.]+)@([a-z\.]+[\.][a-z]{2,3})$')">

Top of Form

Email Address: [image: image23.wmf]

frank@sislands.com

Bottom of Form

This example introduces several new special characters. Let’s look at that regular expression closely. [a-z\.] means match any lowercase letter or a period. The + says to match that pattern one or more times. The ^ matches the beginning of the line or string and the $ signifies the end of the line. If there were extra digits at the beginning or end of the first sample pattern, it would still find the required pattern string, but the extra digits would get ignored. The surrounding ^ and $ force a match on the entire string.

Notice that \1 wasn't used in the second part of the regular expression allowing letters and periods. If you did, it would try to match the exact text found by the first pattern, rather than reusing the pattern itself.

RegExp "Patterns"

The following RegExp patterns are useful for testing form fields as well as any variables passed on to the server:

var reWhitespace = /^\s+$/
var reLetter = /^[a-zA-Z]$/
var reAlphabetic = /^[a-zA-Z]+$/
var reAlphnumeric = /^[a-zA-Z0-9]+$/
var reDigit = /^\d/
var reLetterOrDigit = /^[a-zA-Z]|\d$/
var reInteger = /^\d+/
var reSignedInteger = /^(\+|-)?\d+$/
var reEmail = /^+\@.+\..+$/

Looking at the anatomy of the Regular Expressions, we can immediately notice a common thread: /^ ... $/. These indicate the beginning and end of the string. When testing strings we should always enforce an exact string match. Additionally, use of /./ can create unusual results as it will match any character.

For example the reEmail pattern does not evaluate for a strict email address, it simply requires "@" and "." Besides matching strings, Regular Expressions can be used to replace certain string information. We can create patterns that will strip all non-digit character (everyone writes a phone number in a different way).

function getNumbers(str) {
 return str.replace(/D/g, "");
}

RegExp()

The constructor function is used as follows:

new RegExp("pattern"[, "flags"])

Parameters:

pattern
The text of the regular expression.

flags
If specified, flags can have one of the following values:

· g: global match

· i: ignore case

· gi: both global match and ignore case
Notice that the parameters to the literal format do not use quotation marks to indicate strings, while the parameters to the constructor function do use quotation marks. So the following expressions create the same regular expression:

/ab+c/i
new RegExp("ab+c", "i")

Description

When using the constructor function, the normal string escape rules (preceding special characters with \ when included in a string) are necessary. For example, the following are equivalent:

re = new RegExp("\\w+")
re = /\w+/

Summary of RegExp Pattern Syntax

	Character
	Description

	\
	escape "special characters"

	^
	start of the line

	$
	end of the line

	*
	zero or more

	+
	one or more

	?
	zero or one

	.
	Matches one character

	(pattern)
	Limits scope, and provides grouping

	x|y
	either x or y

	{n}
	character exactly n times

	{n,}
	character at least n times

	{n,m}
	n times but no more than m times

	[xyz]
	any character listed

	[^xyz]
	any character not listed

	\b
	a word boundary

	\B
	a non-word boundary

	\d
	digit

	\D
	non-digit

	\f
	form-feed character

	\r
	carriage return

	\n
	new-line character

	\s
	whitespace character

	\S
	non-whitespace character

	\t
	tab

	\v
	vertical tab

	\w
	any word character including underscore

	\W
	any non-word character

"Trim" Function

Before the trimming | Let's see |

After the trimming |Let's see|

<SCRIPT>

function trim(str) {
 str = str.replace(/^\s+/, ""); // beginning spaces are convert to an empty string

 str = str.replace(/\s+$/, ""); // ending spaces are convert to an empty string

 return(str);
}

</SCRIPT>

"Swap" Function

Your Name (Last, First): Peter, Frank

<SCRIPT>

str = prompt("Please Enter your Name (First Last):", "Frank Peter");

if (str == "" || str == null) str = "Frank Peter";

str = str.replace(/(\w+)\s(\w+)/, "$2, $1"); // "swap" the 1st word and the 2nd word

alert(str);

document.write(str);

</SCRIPT>

Inserting/Removing Commas from Numbers

<SCRIPT>

function insert(form) {
 var re = /(-?\d+)(\d{3})/;
 var num = form.entry.value;

 // insert commas every 3 digits, 100535709 => 100,535,709
 while (re.test(num)) { // while the test condition holds continue
 num = num.replace(re,"$1,$2");
 alert(num); // the alert msg is here to show you how the commas are inserted
 }
 form.commaOutput.value = num;
}

function remove(form) {
 var re = /,/g;

 form.plainOutput.value = form.commaInput.value.replace(re,"");
}

</SCRIPT>

<FORM>

W/O Commas: <INPUT TYPE="text" NAME="entry">
<INPUT TYPE="button" VALUE="Insert commas" onClick="insert(this.form)">
W/ Commas: <INPUT TYPE="text" NAME="commaOutput">

W/ Commas: <INPUT TYPE="text" NAME="commaInput">
<INPUT TYPE="button" VALUE="Remove commas" onClick="remove(this.form)">
W/O Commas: <INPUT TYPE="text" NAME="plainOutput">

</FORM>
Validate Date Format

<SCRIPT>

function isValidDate(strDate) {
 var datePat = /^(\d{1,2})(\/|-)(\d{1,2})\2(\d{2}|\d{4})$/;
 var matchArray = strDate.match(datePat);

 if (matchArray == null) return false;

 var month = matchArray[1];
 var day = matchArray[3];
 var year = matchArray[4];

 if (month < 1 || month > 12) return false;
 if (day < 1 || day > 31) return false;
 if ((month == 4 || month == 6 || month==9 || month == 11) && day == 31) return false;
 if (month == 2) {
 var isleap = (year % 4 == 0 && (year % 100 != 0 || year % 400 == 0));

 if (day > 29 || (day == 29 && !isleap)) return false;
 }
 return true;
}

</SCRIPT>

Using type

Every Form Element Object <INPUT TYPE="..."> has a type Property that identifies what type of element it is. The type Property allows to loop through the elements[] Array and operator on the Form Objects it contains in ways that depend on their type .

Top of Form

[image: image24.wmf]

[image: image25.wmf]

 HTMLCONTROL Forms.HTML:Option.1 [image: image26.wmf]

 HTMLCONTROL Forms.HTML:Checkbox.1 [image: image27.wmf]

 HTMLCONTROL Forms.HTML:Checkbox.1 [image: image28.wmf]
[image: image29.wmf]

 HTMLCONTROL Forms.HTML:Text.1 [image: image30.wmf]

25

[image: image31.wmf]

Let's see what happens

 HTMLCONTROL Forms.HTML:Select.1 [image: image32.wmf]

Item 1

 HTMLCONTROL Forms.HTML:Select.1 [image: image33.wmf]

Item 1

Item 2

Item 3

[image: image34.wmf]

S

ubmit

 [image: image35.wmf]R

eset

Bottom of Form

<SCRIPT>

function ClearForm(form) {
 var i, j;

 // go through the entire Form Object
 for (i = 0; i < form.length; i++) {
 alert('form.elements[' + i + '] \n\n' +
 '<INPUT TYPE="' + form.elements[i].type + '">');

 // if the element isn't a button, hidden, submit, or reset then set the VALUE to ""
 if (form.elements[i].type != 'button' && form.elements[i].type != 'hidden' &&
 form.elements[i].type != 'submit' && form.elements[i].type != 'reset')
 form.elements[i].value = "";

 // if the element is a radio button or a checkbox then
 // uncheck the Object if it is checked
 if (form.elements[i].type == 'radio' || form.elements[i].type == 'checkbox')
 form.elements[i].checked = false;

 // if the element is a select Object then assign it new text values
 if (form.elements[i].type == 'select-one' ||
 form.elements[i].type == 'select-multiple') {
 for (j = 0; j < form.elements[i].length; j++) {
 form.elements[i].options[j].text = " Item 1" + j + " ";
 }

 form.elements[i].options[0].selected = true;
 }
 }
}

</SCRIPT>

<FORM NAME="testform">
 <INPUT TYPE="hidden">
 <INPUT TYPE="radio" NAME="rdoBtn" CHECKED>
 <INPUT TYPE="radio" NAME="rdoBtn">
 <INPUT TYPE="checkbox" NAME="chkBox" VALUE="ON" CHECKED>
 <INPUT TYPE="checkbox" NAME="chkBox" VALUE="ON">
 <INPUT TYPE="password" NAME="pwd" VALUE="password">
 <INPUT TYPE="text" VALUE="25">
 <TEXTAREA>Let's see what happens</TEXTAREA>
 <SELECT NAME="selMenu">
 <OPTION>Item 1</OPTION>
 <OPTION>Item 2</OPTION>
 <OPTION>Item 3</OPTION>
 <OPTION>Item 4</OPTION>
 <OPTION>Item 5</OPTION>
 </SELECT>
 <SELECT NAME="selMenu1" SIZE="3" MULTIPLE>
 <OPTION>Item 1</OPTION>
 <OPTION>Item 2</OPTION>
 <OPTION>Item 3</OPTION>
 <OPTION>Item 4</OPTION>
 <OPTION>Item 5</OPTION>
 </SELECT>
 <INPUT TYPE="submit" VALUE="Submit">
 <INPUT TYPE="reset" VALUE="Reset">
 <INPUT TYPE="button" VALUE="test" onClick="ClearForm(this.form);">
</FORM>

"Validation" Form

<FORM
 NAME="vForm"
 METHOD="POST"
 ACTION="mailto.cgi"
 onSubmit="return ValidateInput(this)">
 First Name: <INPUT TYPE="text" NAME="First">
 Last Name: <INPUT TYPE="text" NAME="Last">
 Address: <INPUT TYPE="text" NAME="Address1">
 Address (Use this second line, if needed):
 <INPUT TYPE="text" NAME="Address2">
 City: <INPUT TYPE="text" NAME="City">
 State or Province: <INPUT TYPE="text" NAME="State">
 Postal Code: <INPUT TYPE="text" NAME="Postal">
 Age:<INPUT TYPE="text" NAME="Age">
 Income:
 <SELECT NAME="Income">
 <OPTION VALUE="0"></OPTION>
 <OPTION VALUE="00_15">less than $15,000</OPTION>
 <OPTION VALUE="15_20">$15,000 - $20,000</OPTION>
 <OPTION VALUE="20_30">$20,000 - $30,000</OPTION>
 <OPTION VALUE="30_40">$30,000 - $40,000</OPTION>
 <OPTION VALUE="40_60">$40,000 - $60,000</OPTION>
 <OPTION VALUE="60_up">more than $60,000</OPTION>
 </SELECT>
 Female: <INPUT TYPE="radio" NAME="Sex" VALUE="F">
 Male: <INPUT TYPE="radio" NAME="Sex" VALUE="M">
 <INPUT TYPE="SUBMIT" NAME="Submit"><INPUT TYPE="RESET">
</FORM>

Form "Validation"

<SCRIPT>

/****** Simple Validation Checking ******/

function ValidateInput(form) {
 var LB = "\n";
 var msgHdr = "Please fill out your:" + LB + LB;
 var msg = "";

 if (form.First.value.length == 0) msg += "First Name" + LB;
 if (form.Last.value == "") msg += "Last Name" + LB;
 if (form.Address1.value.length == 0) msg += "Address" + LB;
 if (form.City.value.length == 0) msg += "City" + LB;
 if (form.State.value.length == 0) msg += "State or Province" + LB;
 if (form.Postal.value.length == 0) msg += "Postal Code" + LB;
 if (form.Age.value.length == 0 || parseInt(form.Age.value) == 0) msg += "Age" + LB;
 if (form.Income.options[form.Income.selectedIndex].value == "0") msg += "Income" + LB;

 // OR form.elements[9].checked == false && form.elements[10].checked == false
 if (form[9].checked == false && form[10].checked == false) msg += "Sex" + LB;

 if (msg.length > 0) {
 alert(msgHdr + msg);
 return false;
 }
 else return true;
}

/****** End of Validation Checking ******/

</SCRIPT>

<BODY>
<FORM
 NAME="vForm"
 METHOD="POST"
 ACTION="formmail.pl"
 onSubmit="return ValidateInput(this)">
 etc...
 <INPUT TYPE="Submit" VALUE="Submit Query">
 <INPUT TYPE="Reset" VALUE="Reset">
</FORM>

Form "Validation"

<SCRIPT>

/****** Simple Validation Checking ******/

//---
// The ValidateInput function is called when the user
// clicks the Submit button. Before the values are
// submitted, this function makes sure that
// entries have been made in all boxes except Address2.
//---

function ValidateInput(form) {
 var LB = "\n"; // LB represents a Line Break
 var msgHdr = "Please fill out your:" + LB + LB; // Alert Header Message
 // The message the User will see informing her or him of any empty fields that are required
 var msg = "";

 // We are simply checking to see if the field is empty or not
 // if the field is empty then add the Field Information to the msg variable
 // NOTE: we could have also used -- if (form.First.value.length == 0)
 if (form.First.value == "") msg += "First Name" + LB;
 if (form.Last.value == "") msg += "Last Name" + LB;
 if (form.Address1.value == "") msg += "Address" + LB;
 // Note: Address2 is not mandatory

 if (form.City.value == "") msg += "City" + LB;
 if (form.State.value == "") msg += "State or Province" + LB;

 // NOTE: You can customize the following line for postal codes in your country
 // this is where you would call another function to take of this particular situation
 if (form.Postal.value == "") msg += "Postal Code" + LB;

 // Verify that Age is a numeric w/ a value greater than 0 by converting it to an integer:
 if (form.Age.value == "" || parseInt(form.Age.value) == 0) msg += "Age" + LB;

 // Make sure that the user makes a selection from the Income drop-down list:
 // the first selection is empty, so the user has to select something other than the first selection
 if (form.Income.options[form.Income.selectedIndex].value == "0") msg += "Income" + LB;

 // Make sure that a Female or Male radio button has been selected:
 // NOTE: The if statements says if male and the female radio buttons are not checked
 // then add that information to the msg variable
 // OR form.elements[9].checked == false && form.elements[10].checked == false
 if (form[9].checked == false && form[10].checked == false) msg += "Sex" + LB;

 // Display an alert if any of the input is missing:
 // the msg variable will only be empty if all the fields are filled out,
 // if not, the msg variable will contain the fields that are empty
 // if the msg string is not empty, meaning some fields were left empty
 if (msg.length > 0){ alert(msgHdr + msg);
 // return the document and the results back to the User
 // instead of "Submitting" the Form's Information to the server
 return false;
 }
 // "Submit" the Form's Information to the server for CGI processing.
 else return true;
}

/****** End of Validation Checking ******/

</SCRIPT>

<BODY>
<FORM
 NAME="vForm"
 METHOD="POST"
 ACTION="formmail.pl"
 onSubmit="return ValidateInput(this)">
 etc...
 <INPUT TYPE="Submit" VALUE="Submit Query">
 <INPUT TYPE="Reset" VALUE="Reset">
</FORM>

Car Picker Validation

<SCRIPT>

function validEmail(email) {
 if (email == "") return false;

 var invalidChars = " /:,;";

 for (i = 0; i < invalidChars.length; i++) {
 var badChar = invalidChars.charAt(i);

 if (email.indexOf(badChar, 0) > -1) return false;
 }

 var atPos = email.indexOf("@", 1);

 if (atPos == -1) return false;

 if (email.indexOf("@", atPos + 1) != -1) return false;

 var periodPos = email.indexOf(".", atPos);

 if (periodPos == -1) return false;

 if (periodPos + 3 > email.length) return false;

 return true;
}

function isNum(passedVal) {
 if (passedVal == "") return false;

 for (i = 0; i < passedVal.length; i++) {
 if (passedVal.charAt(i) < "0") return false;
 if (passedVal.charAt(i) > "9") return false;
 }

 return true;
}

function validZip(inZip) {
 if (inZip == "") return true;

 if (isNum(inZip)) return true;

 return false;
}

function submitIt(form) {
 var colorChoice = form.color.selectedIndex;

 if (form.color.options[colorChoice].value == "") {
 alert("You must pick a color");
 return false;
 }

 var doorOption = -1;

 for (i = 0; i < form.DoorCt.length; i++) {
 if (form.DoorCt[i].checked) doorOption = i;
 }

 if (doorOption == -1) {
 alert("You must choose 2 or 4 door");
 return false;
 }

 if (form.DoorCt[doorOption].value == "fourDoor" && form.sunroof.checked) {
 alert("The sunroof is only available on the two door model");
 return false;
 }

 if (!validEmail(form.emailAddr.value)) {
 alert("Invalid email address");
 form.emailAddr.focus();
 form.emailAddr.select();
 return false;
 }

 if (form.zip.value == "" && form.dealerList.selectedIndex == 0) {
 alert("You must either enter a Zip code, or pick the dealer closest to you");
 form.zip.focus();
 return false;
 }

 if (!validZip(form.zip.value)) {
 alert("That is an invalid Zip code");
 form.zip.focus();
 form.zip.select();
 return false;
 }

 return true;
}

function doorSet(sunroofField) {
 if (sunroofField.checked) {
 for (i = 0; i < document.myForm.DoorCt.length; i++) {
 if (document.myForm.DoorCt[i].value == "twoDoor") {
 document.myForm.DoorCt[i].checked = true;
 }
 }
 }
}

</SCRIPT>

<FORM NAME="myForm" METHOD="POST" ACTION="formmail.pl"
 onSubmit="return submitIt(this)">

Your Email Address: <INPUT TYPE="text" NAME="emailAddr">
Colors:
<SELECT NAME="color">
 <OPTION VALUE>Choose a color
 <OPTION VALUE="red">Red
 <OPTION VALUE="green">Green
 <OPTION VALUE="blue">Blue
</SELECT>

Options:
<INPUT TYPE="checkbox" NAME="sunroof" VALUE="yes"
 onClick="doorSet(this)">Sunroof (Two door only)
<INPUT TYPE="checkbox" NAME="pSteering" VALUE="yes">Power Steering
<INPUT TYPE="checkbox" NAME="pBrakes" VALUE="yes">Power Brakes
<INPUT TYPE="checkbox" NAME="fMats" VALUE="yes">Floor Mats

Doors:
<INPUT TYPE="radio" VALUE="twoDoor" NAME="DoorCt">Two
<INPUT TYPE="radio" VALUE="fourDoor" NAME="DoorCt">Four

Either enter your Zip code, or pick the dealer nearest you: Zip:
<INPUT TYPE="text" NAME="zip">

<SELECT NAME="dealerList">
 <OPTION>California--Lemon Grove
 <OPTION>California--Lomita
 <OPTION>California--Long Beach
 <OPTION>California--Los Alamitos
 <OPTION>California--Los Angeles
</SELECT>

<INPUT TYPE="Submit" VALUE="Submit">
<INPUT TYPE="Reset" VALUE="Reset">

Car Picker Validation

<SCRIPT>

function validEmail(email) {
 if (email == "") return false; // cannot be empty

 // invalidChars - invalid characters for an email address.
 var invalidChars = " /:,;"; // NOTE: 1st char is a space

badChar saves the position of the invalid character in the invalidChars string. For example, if the invalid character was a colon, badChar would contain 2, the position of the colon in the five-character string.

String.charAt() gets the nth character from a string

 for (i = 0; i < invalidChars.length; i++) {
 // does it contain any invalid characters?
 var badChar = invalidChars.charAt(i);

indexOf looks for the position of a character in a string. If the result of the indexOf function is –1, the character isn't in the string, and you again get a false result.

String.indexOf(substring, start) returns the position of the first occurrence of the substring that appears after the start position, if any, or –1 if no such occurrence is found.

substring – "substring" that is to be searched for within string

start – an optional integer argument that specifies the position within the string at which the search is to start. Legal values are 0 (the position of the first character in the string) to string.length – 1 (the position of the last of character in the string). If the argument is omitted, the search begins at the first character of the string.

 if (email.indexOf(badChar, 0) > -1) return false;
 }

Checking to see if there is at least one @ within the string

 // there must be one "@" symbol
 var atPos = email.indexOf("@", 1);

 // atPos will only equal -1 if there wasn't an @ within the string
 if (atPos == -1) return false;

If an @ is found within the string, we want to make sure that there isn't more than one @, so we start searching from that position + 1, where the first @ was found, to the end of the string searching for another @. If another @ is found the indexOf will not return a –1, but will return a number, the position of the found @. If the indexOf != -1, means that an additional @ was found, hence false.

 // and only one "@" symbol
 if (email.indexOf("@", atPos + 1) != -1) return false;

Checking to see if there is at least one "." within the string

 // periodPos will only equal -1 if there wasn't an "." within the string
 var periodPos = email.indexOf(".", atPos);

 // and at least one "." after the "@"
 if (periodPos == -1) return false;

email.length is a property of email that gives us the length of the email address. After the first "." is found we to make sure that at least two characters exist (.uk, .de, .com, .org, etc…)

 // there must be at least 2 characters after the "."
 if (periodPos + 3 > email.length) return false;

 return true;
}

Checking:
1) if a value was passed
2) then checking to see if the individual digits are numbers by making sure that they fall between 0–9.

function isNum(passedVal) { // Is this a number?
 if (passedVal == "") return false;

String.charAt() get the nth character from a string, in this case passedVal.charAt(i) is the ith digit which is then checked to see if it is a number. passedVal.length is the length or number of digits of the Number passed.

charAt checks the character at the position i. If the character is less than "0" or greater than "9", it isn't a digit, so bail out and declare the input to be non-numeric, or false. If the result is true, you've a got a numeric Zip Code.

 for (i = 0; i < passedVal.length; i++) {
 if (passedVal.charAt(i) < "0") return false;

 if (passedVal.charAt(i) > "9") return false;
 }

 return true;
}

Checking:
1) if a value was passed
2) then checking to see if the individual digits are numbers by making sure that they fall between 0–9.

function validZip(inZip) { // Is this a valid Zip Code?
 if (inZip == "") return true;

The value is passed to the isNum function above.

 // Check if the Zip Code is numeric
 if (isNum(inZip)) return true;

 return false;
}

function submitIt(form) { // make sure they enter a color
 var colorChoice = form.color.selectedIndex;

form.color.selectedIndex is the (index) position of the option selected. In this particular case, the option selectedIndex = 0 has no value by design. If an individual made no selection, the condition below would exist. If an individual chose an option, by actually selecting something, then the selectedIndex would be > 0 and the remaining options all have values assigned to them, again by design.

 if (form.color.options[colorChoice].value == "") {
 alert("You must pick a color");
 return false;
 }

Make sure they enter in a number of doors. doorOption = -1 is obviously not a valid number of car doors. doorOption is acting as a switch, only getting set if a radio button is checked. If a radio button is checked then doorOption is set to the index of that radio button, hence not equal to –1.

 var doorOption = -1;
form.DoorCt.length is the number of radio buttons.

 for (i = 0; i < form.DoorCt.length; i++) {
 if (form.DoorCt[i].checked) doorOption = i;
 }

if doorOption switch is not set then we know that no radio button was checked.

 if (doorOption == -1) {
 alert("You must choose 2 or 4 door");
 return false;
 }

With your forms, you'll often find that if the user makes one choice, that choice will dictate the value of other fields on the form. For example, let's say that the sunroof option is only available on a two-door model. You could deal with it this in two ways. First, you could check the entry and put up an alert dialog if the user makes the wrong choice.

 // can't have the sunroof with a four door
 if (form.DoorCt[doorOption].value == "fourDoor" && form.sunroof.checked) {
 alert("The sunroof is only available on the two door model");
 return false;
 }

But it's better design to simply make the entry for the user. So if the user picks the sunroof, the script automatically clicks the two-door button. This function actually occurs at very end of the script. It is placed here for illustrative purposes only.

if (sunroofField.checked) sunroofField is checked then we need to make sure that the "Two Door" radio is also checked.

document.myForm.DoorCt.length is the length or number of radio buttons. We need to cycle through the entire "length", looking at the radio buttons until we find the one equal to "twoDoor", document.myForm.DoorCt[i].value == "twoDoor".

Once found, we make sure that we check that particular radio button, document.myForm.DoorCt[i].checked = true

function doorSet(sunroofField) {
 if (sunroofField.checked) {
 for (i = 0; i < document.myForm.DoorCt.length; i++) {
 if (document.myForm.DoorCt[i].value == "twoDoor") {
 document.myForm.DoorCt[i].checked = true;
 }
 }
 }
}

1. When the user clicks the OK button on the alert box, the script returns the cursor to the form's email field with the focus() command.

2. Then it selects the contents of the field with the select() command.

Input.select() selects the text displayed in a text, textarea, password, or fileupload element. This method produces the same result as the user dragging the mouse across all the text in the specified text object. On most platforms, this produces the following effects:

· the text is hightlighted, often displayed with colors reversed.

· if the text remains, selected the next time the user types a character, the selected text is deleted and replaced with the newly typed character.

· the text becomes available for cut & paste.

 // check to see if the email's valid
 if (!validEmail(form.emailAddr.value)) {
 alert("Invalid email address");
 form.emailAddr.focus();
 form.emailAddr.select();
 return false;
 }
selectedIndex - specifies the index of the selected option within the Select element. If the Select element has it MULTIPLE attritube set and allows multiple selections, this property only specifies the index of the first selected item or -1 if none are selected.

 if (form.zip.value == "" && form.dealerList.selectedIndex == 0) {
 alert("You must either enter a Zip code, or pick the dealer closest to you");
 form.zip.focus();
 return false;
 }

 if (!validZip(form.zip.value)) {
 alert("That is an invalid Zip code");
 form.zip.focus();
 form.zip.select();
 return false;
 }

 // If we made it to here, everything's valid, so return true
 return true;
}

function doorSet(sunroofField) {
 if (sunroofField.checked) {
 for (i = 0; i < document.myForm.DoorCt.length; i++) {
 if (document.myForm.DoorCt[i].value == "twoDoor") {
 document.myForm.DoorCt[i].checked = true;
 }
 }
 }
}

<SCRIPT>
Bottom of Form

_1048881817.unknown

_1048881824.unknown

_1048881828.unknown

_1048881830.unknown

_1048881826.unknown

_1048881821.unknown

_1048881822.unknown

_1048881819.unknown

_1048881803.unknown

_1048881810.unknown

_1048881814.unknown

_1048881815.unknown

_1048881812.unknown

_1048881807.unknown

_1048881808.unknown

_1048881805.unknown

_1048881789.unknown

_1048881796.unknown

_1048881799.unknown

_1048881801.unknown

_1048881797.unknown

_1048881792.unknown

_1048881794.unknown

_1048881791.unknown

_1048881782.unknown

_1048881786.unknown

_1048881787.unknown

_1048881784.unknown

_1048881779.unknown

_1048881781.unknown

_1048881775.unknown

_1048881777.unknown

_1048881772.unknown

