So, what is an Event?
Event Handlers
Event Handlers are JavaScript methods, i.e. functions of objects, that allow us as JavaScript programmers to control what happens when events occur.

Directly or indirectly, an Event is always the result of something a user does. For example, we've already seen Event Handlers like onClick and onMouseOver that respond to mouse actions. Another type of Event, an internal change-of-state to the page (completion of loading or leaving the page). The same is true of image Objects which generate an onLoad Event when they finish loading. An onLoad Event can be considered an indirect result of a user action.

Although we often refer to Events and Event Handlers interchangeably, it's important to keep in mind the distinction between them. An Event is merely something that happens. An Event Handler is something that you write into a Web page which responds whenever a specific type of Event happens.

The elements on a page which can trigger events are known as "targets" or "target elements," and we can easily understand how a button which triggers a Click event is a target element for this event. Typically, events are defined through the use of Event Handlers, which are bits of script that tell the browser what to do when a particular event occurs at a particular target. These Event Handlers are commonly written as attributes of the target element's HTML tag.

The Event Handler for a Click event at a form field button element is quite simple to understand:

<INPUT TYPE="button" NAME="click1" VALUE="Click me for fun!"
 onClick="event_handler_code">

The event_handler_code portion of this example is any valid JavaScript and it will be executed when the specified event is triggered at this target element. This particular topic will be continued in Incorporating JavaScripts into your HTML pages.

There are "three different ways" that Event Handlers can be used to trigger Functions.

Method 1 (Link Events):
Places an Event Handler as an attribute within an tag, like this:

 ...

You can use an Event Handler located within an tag to make either an image or a text link respond to a mouseover Event. Just enclose the image or text string between the and the tags.

Whenever a user clicks on a link, or moves her cursor over one, JavaScript is sent a link event. One link event is called onClick, and it gets sent whenever someone clicks on a link. Another link event is called onMouseOver. This one gets sent when someone moves the cursor over the link.

You can use these events to affect what the user sees on a page. Here's an example of how to use link events. Try it out, View Source, and we'll go over it.

<A HREF="javascript:void('')"
 onClick="open('default.htm', 'links', 'height=200,width=200');">
How to Use Link Events

The first interesting thing is that there are no <SCRIPT> tags. That's because anything that appears in the quotes of an onClick or an onMouseOver is automatically interpreted as JavaScript. In fact, because semicolons mark the end of statements allowing you to write entire JavaScripts in one line, you can fit an entire JavaScript program between the quotes of an onClick. It'd be ugly, but you could do it.

Here's the first line of interest:

Click on me!

Click on me!

Click on me!

This is just like a normal anchor tag, but it has the magic onClick="" element, which says, "When someone clicks on this link, run the little bit of JavaScript between my quotes." Notice, there's even a terminating semicolon at the end of the alert.

Let's go over each line:

1. HREF="#" tells the browser to look for the anchor #, but there is no anchor "#", so the browser reloads the page and goes to top of the page since it couldn't find the anchor.

2. <A HREF="javascript:void('')" tells the browser not to go anywhere - it "deadens" the link when you click on it. HREF="javascript: is the way to call a function when a link (hyperlink or an HREFed image) is clicked.

3. HREF="javascript:alert('Ooo, do it again!')" here we kill two birds with one stone. The default behavior of a hyperlink is to click on it. By clicking on the link we call the window Method alert() and also at the same time "deaden" the link.

The next line is

Mouse over me!

This is just like the first line, but it uses an onMouseOver instead of an onClick.

Method 2 (Actions within FORMs):
The second technique we've seen for triggering a Function in response to a mouse action is to place an onClick Event Handler inside a button type form element, like this:

<FORM>
 <INPUT TYPE="button" onClick="doSomething();">
</FORM>

While any JavaScript statement, methods, or functions can appear inside the quotation marks of an Event Handler, typically, the JavaScript script that makes up the Event Handler is actually a call to a function defined in the header of the document or a single JavaScript command. Essentially, though, anything that appears inside a command block (inside curly braces {}) can appear between the quotation marks.

For instance, if you have a form with a text field and want to call the function checkField() whenever the value of the text field changes, you can define your text field as follows:

<INPUT TYPE="text" onChange="checkField(this);">

Nonetheless, the entire code for the function could appear in quotation marks rather than a function call:

<INPUT TYPE="text" onChange="if (this.value <= 5)
 {alert("Please enter a number greater than 5");}">

To separate multiple commands in an Event Handler, use semicolons

<INPUT TYPE="text" onChange="alert(‘Thanks for the entry.’);
 confirm(‘Do you want to continue?’);">

<SCRIPT>

function checkField(fld){
 if (fld.value <= 5) alert("Please enter a number greater than 5");
}

</SCRIPT>
<FORM>
 <INPUT TYPE="text" onChange="checkField(this)">

<FORM>

Bottom of Form

<FORM>
 <INPUT TYPE="text"
 onChange="if (this.value <= 5) {
 alert('Please enter a number greater than 5');

 }">
</FORM>
The advantage of using functions as Event Handlers, however, is that you can use the same Event Handler code for multiple items in your document and, functions make your code easier to read and understand.

Method 3 (BODY onLoad & onUnLoad):
The third technique is to us an Event Handler to ensure that all required objects are defined involve the onLoad and onUnLoad. These Event Handlers are defined in the <BODY> or <FRAMESET> tag of an HTML file and are invoked when the document or frameset are fully loaded or unloaded. If you set a flag within the onLoad Event Handler, other Event Handlers can test this flags to see if they can safely run, with the knowledge that the document is fully loaded and all objects are defined. For example:

<SCRIPT>

var loaded = "false";

function doit() {
 // alert("Everything is \"loaded\" and loaded = " + loaded);
 alert('Everything is "loaded" and loaded = ' + loaded);
}

</SCRIPT>

<BODY onLoad="loaded = 'true';">
-- OR --
<BODY onLoad="window.loaded = 'true';">

<FORM>
 <INPUT TYPE="button" VALUE="Press Me"
 onClick="if (loaded = true) doit();">
-- OR --
 <INPUT TYPE="button" VALUE="Press Me"
 onClick="if (window.loaded = true) doit();">
</FORM>

</BODY>

The onLoad Event Handler is executed when the document or frameset is fully loaded, which means that all images have been downloaded and displayed, all subframes have loaded, any Java Applets and Plugins (Navigator) have started running, and so on. The onUnLoad Event Handler is executed just before the page is unloaded, which occurs when the browser is about to move on to a new page. Be aware that when you are working with multiple frames, there is no guarantee of the order in which the onLoad Event Handler is invoked for the various frames, except that the Event Handlers for the parent frame is invoked after the Event Handlers of all its children frames - This will be discussed in detail in Week 8.

Event Handlers
	EVENT
	DESCRIPTION

	onAbort
	the user cancels loading of an image

	onBlur
	input focus is removed from a form element (when the user clicks outside the field) or focus is removed from a window

	onClick
	the user clicks on a link or form element

	onChange
	the value of a form field is changed by the user

	onError
	an error happens during loading of a document or image

	onFocus
	input focus is given to a form element or a window

	onLoad
	a page is loaded

	onMouseOut
	the user moves the pointer off of a link or clickable area of an image map

	onMouseOver
	the user moves the pointer over a hypertext link

	onReset
	the user clears a form using the Reset button

	onSelect
	the user selects a form element’s field

	onSubmit
	a form is submitted (ie, when the users clicks on a submit button)

	onUnload
	the user leaves a page

Note: Input focus refers to the act of clicking on or in a form element or field. This can be done by clicking in a text field or by tabbing between text fields.

Which Event Handlers Can Be Used
	OBJECT
	EVENT HANDLERS AVAILABLE

	Button element
	onClick

	Checkbox
	onClick

	Clickable ImageMap area
	onClick, onMouseOver, onMouseOut

	Document
	onLoad, onUnload, onError

	Form
	onSubmit, onReset

	Framesets
	onBlur, onFocus

	Hypertext link
	onClick, onMouseOver, onMouseOut

	Image
	onLoad, onError, onAbort

	Radio button
	onClick

	Reset button
	onClick

	Selection list
	onBlur, onChange, onFocus

	Submit button
	onClick

	TextArea element
	onBlur, onChange, onFocus, onSelect

	Text element
	onBlur, onChange, onFocus, onSelect

	Window
	onLoad, onUnload, onBlur, onFocus

Incorporating JavaScript into your HTML pages

Method 1: The SCRIPT tag

Including scripts in HTML is simple. Most scripts are contained inside a <SCRIPT> container tag. In other words, on opening <SCRIPT> tag starts the script and a closing </SCRIPT> tag ends it:

<SCRIPT LANGUAGE="JavaScript">
<!--

/***** Beginning of JavaScript Program ******/

document.write("This document last modified on: ");
document.write(document.lastModified);

/***** End of JavaScript Program ******/

//-->
</SCRIPT>

This code runs as soon as the browsers reads it. On the document it displays the message: This document last modified on: (Date of the Document last modification)

Where can you put a script? Anywhere in the HEAD or BODY of your HTML document. You'll learn as we progress that there are preferred locations for certain scripts, depending on what you are trying to accomplish. Note that you can put multiple scripts in your page.

Method 2: Placing JavaScripts within HTML tags
JavaScript code in a <SCRIPT> is executed once, when the HTML file that contains it is read into the web browser. A program that uses only this sort of static script cannot respond dynamically to the user. More dynamic programs define Event Handlers that are automatically invoked by the web browser when certain events occur - for example, when the user clicks on a button within a form. Because events in client-side JavaScript originate form HTML objects (like buttons), Event Handlers are defined as attributes of those objects.
In order to define JavaScript Event Handlers as part of HTML object definitions, JavaScript extends HTML by adding Event Handler attributes to various HTML tags. The <SCRIPT> tag can take optional attributes which determines how the JavaScript script in question is incorporated into the HTML file.

<INPUT TYPE="button" NAME="AlertButton" VALUE="Click here"
 onClick="alert('You just clicked the button')">

The first interesting thing is that there are no <SCRIPT> tags. That's because anything that appears in the quotes of an onClick or an onMouseOver is automatically interpreted as JavaScript. In fact, because semicolons mark the end of statements you can write entire JavaScripts in one line. You can fit an entire JavaScript program between the quotes of an onClick. It'd be ugly, but you could do it.

Here the "script" is inside the <INPUT> tag. When you click the button, the "script" that appears after onClick, the alert function, runs.

An example illustrating Methods 1 & 2 simultaneously.

<SCRIPT LANGUAGE="JavaScript">

document.write("This document last modified on: ");
document.write(document.lastModified);

</SCRIPT>

<p>This button calls the alert() built-in function:</p>

<FORM>
 <INPUT TYPE="button" NAME="AlertButton" VALUE="Click here"
 onClick="alert('You just clicked the button')">
</FORM>

Modular Event Handlers

Which of these is easier to read?

Explicit Event Handler
<INPUT
 TYPE="button"
 NAME="click1"
 VALUE="Click me!"
 onClick="total += 50; tax = calcTax(total);
 document.priceform.total.value = total + tax;">

Modular Event Handler
<INPUT
 TYPE="button"
 NAME="click1"
 VALUE="Click me!"
 onClick="subTotal();">

At first this may seem convenient, but remember the KISS principle. What if you had 10 buttons or onMouseOver all using the same "Event_Handler_code" . If you had to make a change in the "Event_Handler_code" you would to have to make the change in 10 different places. Not a good way of doing something. Of course, this example assumes that the function subTotal() has been defined somewhere earlier in the page, such as embedded into the <HEAD> section or included via an external .js file which is discussed below. That's why we want to segregate scripts from HTML.
Attributes for the <SCRIPT> tag
	ATTRIBUTE
	DESCRIPTION

	ARCHIVE*
	Specifies a JAR (Java Archive) file that contains a number of compressed JavaScript files (and may also contain other auxiliary files, such as digital signatures).

	LANGUAGE
	Indicates the language used in the script
(ie, JavaScript, JavaScript1.2, PerlScript, PHP, or VBScript)

	RUNAT
	Within Active Server Pages, runs the JavaScript on the Server instead of the Browser

	SRC
	URL for a file containing the JavaScript source code. The file should have the extension .js.

LANGUAGE Attribute
If you are using JavaScript you do not have to specify the LANGUAGE attribute. By default the LANGUAGE is JavaScript. However, if you want to specify a specific JavaScript version such as 1.2 then you would specify the LANGUAGE="JavaScript1.2". If you are going to use another language such as VBScript then you need to tell the browser what Interpreter to use. The VBScript language is built-in the Microsoft IE browsers. NOTE: VBScript does not work in the Netscape browsers.

If the browser is not compatible with the specified version of JavaScript, it simply ignores the script following the <SCRIPT> tag.

Using External Files for JavaScript Programs
Including JavaScript programs directly in the HTML files can be convenient for small scripts and basic HTML pages, it can quickly get out of hand when pages require long and complex scripts or when the code and information is used throughout the website.

To make development and maintenance of HTML files and JavaScript scripts easier, the JavaScript specification includes the option of keeping your JavaScript in separate files and using the SRC attribute of the <SCRIPT> tag to include the JavaScript program in an HTML file

<SCRIPT LANGUAGE="JavaScript" SRC="menu.js">

One of the benefits of this approach is that your script are automatically hidden from other browser that don’t support JavaScript.

Your external script can contain any code you like, but it usually contains functions. Functions provide the modularity we seek in a programming architecture. The format of the .js file is simply the naked script with no HTML tags present. For example, consider this page made up of two files: one is the HTML source and the other is the JavaScript source.

eshop.htm
<HTML>
<HEAD>
<TITLE>E-Shop</TITLE>
<SCRIPT SRC="eshop_calcs.js"></SCRIPT>
</HEAD>
<BODY>
...etc...
</BODY>
</HTML>

eshop_calcs.js
function calcShipping(weight,state)

{ ... }

function calcTax(price,state)

{ ... }

Now you can see why external files allow for the possibility of creating portable functions. Imagine that you authored the calcShipping() function. Suppose it only required two incoming parameters, shipment weight and the destination state. The function itself then did all the dirty work -- translating the state abbreviation into a shipping zone and calculating the rate based on some representation of the shipping rate chart which you've built into the function. Once done the function simply returns a number reflecting the cost. As long as this function is coded portably; that is, relies only on internal local variables to do the work, you could distribute this function to anyone who wanted the ability to calculate shipping rates.

In fact, others wouldn't even need to copy the function from you. They could simply link to it on your server, should you be in such a generous mood:

<SCRIPT SRC="http://sislands.com/shopping/calcShipping.js">

Such a setup would be highly modular and portable -- if you had to change the rate table, you simply modify this function and every site which links to it will automatically reflect the new rates. Even if you are not ready to distribute your modular functions globally, this type of portability is useful even within your own site, since any page on your site can easily access common functions. And changes to these functions are immediately reflected on every page which uses them.

From a people perspective, the JavaScript god of your team can play with calcShipping() all day without needing to see any of the HTML -- and vice versa for your HTML monkeys.

While the SRC attribute goes a long way to helping segregate programming language from markup tags, it is no panacea. There remains one large, sticky problem, and those are Event Handlers.

Note: At the same time, though, this technique requires an additional server request and server access, which may be problematic on a slow server or across a slow connection to the Internet.

Drop down menu & menu.js (see example in action on the Website)

Check out the source for menu.htm, where is the script that contains goPage(this.form)? menu.js contains the function. Even the browser doesn't display the menu.js scripts and functions when you view the source, the menu.js scripts and functions are really stored in the browser's memory ready for use. If an individual wanted to view the "missing" scripts, all the individual would have to do is just download the file, in this particular case menu.js happens to be in the same directory.

Before using code within a source file from within the HTML file it is recommended that a test is made to ensure that the source file has actually loaded:

<SCRIPT LANGUAGE="JavaScript">
<!--

var loaded = false;

//-->
</SCRIPT>

<SCRIPT SRC="library.js"></SCRIPT>

<BODY onLoad="if (loaded) hello();">

And within library.js:

function hello() {
 alert('Hello World');
}

loaded = true;

The variable loaded gets changed from false to true if library.js is "loaded" and ready to go.

ARCHIVE Attribute
If your program uses a number of JavaScript files, it can be more efficient to combine them into a single compressed JAR (Java ARchive) file that can be loaded over the network.

NOTE:

1. works with JavaScript 1.2 or greater

2. the ARCHIVE attribute specifies only the name of the archive, not the name of the individual .js file that you want to use within it.

<SCRIPT ARCHIVE="util.jar" SRC="menu.js">

A JAR archive is simply a common ZIP file with some additional manifest information added. Netscape provides a free tool that allows developers to create JAR archives. One of the most important uses of archives is attaching digital signatures to scripts.

Of course, an immediate problem crops up with this type of SCRIPT container: Browsers that don’t support JavaScript will happily attempt to display or parse the content of the script. In order to avoid this, use the following approach using HTML comments:

<SCRIPT LANGUAGE="JavaScript">

<!—Hide the script from older browsers

JavaScript Program
// Stop hiding from older browsers -->

</SCRIPT>

These comments:

<!— Hide the script from older browsers and
// Stop hiding from older browsers -->
Note: // is a JavaScript comment tag that tells JavaScript itself to ignore -->
without // JavaScript will complain & produce an error message.

ensure that other browsers will ignore the entire script and not display it because everything between <!—and --> should be ignored by a standard browser. Of course, if two users were to view the source code of the document, they would still see the script.

Probably 99+% of the all browsers support JavaScript today. So this particular problem is not an issue anymore.

[image: image1.png]

Commenting:
Here a brief comment is included after each variable declaration to explain what the variable is and how it will be used.

These comments make it much easier to decipher what is happening later on in the program. Because variable declaration is done first, these comments are also all grouped together in one place that is easy for someone reading the code to refer back to.

// Commenting
// using C++ style

/*
Commenting
using
this style is from C
*/

var Num = 0;
//Number entered from button
var Num1 = 0;
//Number to perform operation on
var Num2 = 0;
//Number to perform operation on
var Num3 = 0;
//Results of operating on N1, N2
var NumSet1 = "false";
//Have we finished entering N1?
var NumStart2 = "false";
//Have we started entering N2?
var DecSet = "false";
//Are we using a decimal place?
var Op = '';
//Operation as entered by user
var DoOp = '';
//Operation as accepted by script
The following is incorrect:

<SCRIPT LANGUAGE="JavaScript">
<!--
-->
</SCRIPT>

--> on its own is not a valid JavaScript comment tag. The following is correct:

<SCRIPT LANGUAGE="JavaScript">
<!--
//-->
</SCRIPT>

Command Blocks
To make a script easier to read make use of command blocks. The simple process of using indentations greatly improves readability and being able to follow the flow of a program. Commenting & Command Blocks will in the long run definitely help improve your scripting.

if (day == "Saturday" || day == "Sunday") {
 document.write("It’s the weekend!");
}
else {
 document.write("It’s not weekend!");
}
JavaScript and the HTML layout

JavaScript Object Property values are based on the content of your HTML document, sometimes referred to as reflection because the property values reflect the HTML. To understand JavaScript reflection, it is important to understand how the Browser performs the layout -- the process by which the Browser transforms HTML tags into graphical display on your computer.

Generally, the layout happens sequentially in the Browser: the Browser starts at the top of the HTML file and works downward, displaying output to the screen as it goes. Because of this "top-down" behavior, JavaScript reflects only HTML that it has encountered. For example, suppose you define a form with a couple of text-input elements:

<FORM NAME="statform">
 <INPUT TYPE="text" NAME="userName">
 <INPUT TYPE="text" NAME="Age">

These form elements are reflected as JavaScript Objects that you can use after the form is defined: document.statform.userName and document.statform.Age. For example, you could display the value of these objects in a script after defining the form:

<SCRIPT>
 document.write(document.statform.userName.value);
 document.write(document.statform.Age.value);
</SCRIPT>

However, if you tried to do this before the form definition (above it in the HTML page), you would get an error, because the Objects don't exist yet in the Navigator Object.

Likewise, once layout has occurred, setting a property value does not affect its value or appearance. For example, suppose you have a document title defined as follows:

<TITLE>My JavaScript Page</TITLE>

This is reflected in JavaScript as the value of document.title. Once the Navigator has displayed this in the Title Bar of the Browser window, you cannot change the value in JavaScript. If you have the following script later in the page, it will not change the value of document.title, it will not affect the appearance of the page, or generate an error.

document.title = "The New Improved JavaScript Page"

There are some important exceptions to this rule: you can update the value of Form Elements dynamically. For example, the following script defines a text field that initially displays the string "Starting Value." Each time you click the button, you add the text "...Updated!" to the value.

<FORM NAME="demoForm">
 <INPUT TYPE="text" NAME="mytext" VALUE="Starting Value"><P>
 <INPUT TYPE="button" VALUE="Update Text Field"
 onClick="document.demoForm.mytext.value += '...Updated!'">
</FORM>

This is a simple example of updating a form element after the layout.

Using Event Handlers, you can also change a few other properties after the layout has completed, for example, document.bgColor.

The concept of Program Control

So far, we have seen ways to change the appearance and behavior of Objects on a Web page in direct response to user input. But we haven't seen how JavaScript can be used to make decisions, or process and simplify complex data. These are two of the most important things you can do with JavaScript. In this module we'll look at why this is true.

The "if" statement
"if" statements are used to compare two values and execute Functions based on the result. This gives you the ability to make decisions based on all kinds of different input.

For instance: Is the user a first-time visitor? Or not? Has a shopper ever ordered a certain item? Or not? Has a customer supplied their phone number? Or not?

In each of these cases, you would want to execute different actions in response to the answers. You can use "if" statements to do this.

Looping
Looping is when you repeat an action over and over again. And it's amazing what you can accomplish by doing simple things repetitively. Basically, if you have a lot of information to process, you can use loops to systematically work through it.

For instance, you can use loops to retrieve information from users by working through all of the form elements on a page and putting the data from each into a Variable. Or you can present complex information to users by using a loop to control a document.write() Method that generates a very detailed Web page (such as a price list with hundreds of items).

The combination of the two
When you combine "if" statements with looping, you gain the ability to greatly simply the user's interaction with your Web site. You can collect user information, process it, make decisions about it and then generate tailored responses.

With these new techniques, you also gain a greater ability to control the various techniques that you have already learned.

Introduction to "if - else" Branching
Branching that involves "if - else" allows your program to behave very differently depending on what a user inputs. For example, you could write a script that would act one way toward you and a different way toward everyone else. Here's the basic form of an if - then statement:

if (some condition is true) {
 do something;
 do something;
 do something;
}

— OR —
// don't need the {}s if there is just one statement
if (some condition is true) do something;

— OR — Here's the basic form of an if - else statement:

if (some condition is true) {
 do something;
 do something;
 do something;
}
else {
 do something else;
 do something else;
 do something else;
}

The important parts of this structure are:

· It starts with the word "if" (if must be lowercase).

· There is a condition in parentheses that is either true or false.

· There is a set of statements that should be executed if the condition is true. These statements go between curly brackets.

Remember, spacing is only there to make the script more legible. You can put the entire if - then statement on one line if you want, but that would be hard to read.

"if" statements have two parts. The first part evaluates whether a value is true or false and the second part of the statement contains the appropriate responses. We'll look first at the process of evaluating true and false.

The first part of the "if" statement
You can use logical operators to create statements that "evaluate" to either true or Here's the basic form of an if - then statement. The following examples illustrate this:

· 5 == 5
This statement evaluates to true because 5 is EQUAL TO 5.

· 5 == 6
This statement evaluates to false because 5 isn't EQUAL TO 6.

· 5 != 6
This statement evaluates to true because 5 is NOT EQUAL TO 6.

· 5==5 && 6==6
This statement evaluates to true because statement one AND statement two are both true.

· 5==5 && 5==6 This statement evaluates to false because statement one AND statement two are not both true, (even though statement one is true).

· 5==5 || 5==6
This statement evaluates to true because either statement one OR statement two is true.

As is often the case, the hardest part about learning to use logical operators is remembering what the symbols mean. In most cases, you'll find the basic ideas pretty intuitive as long as you can easily read and write the symbols.

The second part of the "if" statement
The second component of the "if" statement is pretty simple. It's just one or more lines of code which will be executed only if the logical statement in the first part of the "if" statement evaluates to true. These lines of code are enclosed within curly brackets.

if (x > 0) {
 alert("It's not a negative number.");
 alert("It's greater than zero.");
}

Here's what "if" statements look like.
The following are several examples of "if" statements. As you'll see, the first word is always "if", and that is followed by a statement enclosed in parentheses. This statement in the parentheses either evaluates to true or false. If it evaluates to true, the actions enclosed in the curly brackets that follow it will be executed. If the statement in the parentheses evaluates to false, nothing will happen.

if (x == 10) {
 alert("It's equal to 10.");
}

if (x != 10) {
 alert("It's not equal to 10.");
}

if (x > 10) {
 alert("It's greater than 10.");
}

if (x < 5 && x < 10) {
 alert("It's greater than 5 and it's less than 10.");
}

if (x > 10 || x < 5) {
 alert("It's either greater than 10 or it's less than 5.");
}

"else" statements
You can use the "else" statement immediately following an "if" statement if you want a set of commands to be executed in the event that the "if" statement evaluates to false. It looks like this:

if (x > 10) {
 alert("It's greater than 10.");
}
else {
 alert("It must be less or equal than 10.");
}

— OR —
if (x > 10) alert("It's greater than 10.");
else alert("It must be less or equal than 10.");

Example of a Simple if - else Statement

If you typed yes in the prompt box, you should have received a warm greeting before seeing the rest of the page. If you typed something else, you shouldn't have gotten this greeting.

Here's the heart of the script:

var loveMe = prompt("Do you love me?", "Type yes or no");

if (loveMe.toLowerCase() == "yes") {
 alert("Welcome! I'm so glad! Please, read on!");
}
else {
 alert("I'm sad!");
}

You've seen the first line before. It just brings up a prompt box and loads the user's response into the variable loveMe. The second line, however, has something new in it: a condition. This condition says that if the variable loveMe equals the value "yes," the script should run the statement between the curly brackets. If loveMe equals something else, the statement will not be run.

Note that the condition is two equal signs. This is one of those things that everyone messes up initially. If you put one equal sign instead of two, you're telling JavaScript that loveMe should equal "yes" instead of testing whether or not it actually does equal "yes." Luckily, most browsers look for this sort of mistake and will warn you about it when you try to run your script. However, it's best not to make the mistake in the first place.

Other typical conditions are:

(var1 > var2) is true if var1 is greater than var2

(var1 < var2) is true if var1 is less than var2

(var2 <= var2) is true if var1 is less than or equal to var2

(var1 != var2) is true if var1 does not equal to var2

Two ways to make your conditions fancier:

If you want two things to be true before running the statements in the curly brackets, you can do this:

if ((var1 > 18) && (var1 < 21)) {
 document.write(var1 + "can vote, but can't drink.");
}

Notice the two ampersands. That's how you say "and" in JavaScript. Notice also that the whole clause, including the two sub-parts and the ampersands must be enclosed in parentheses.

If you want either one of two things to be true before running the statements in the curly brackets, do this:

if ((var1 == "love") || (var1 == "need")) {
 document.write("I'm happy because you " + var1 + " me");
}

Sorry, it's a weekday.

/*

since we can't work with the "actual" Date Object we need to create an instance of it (a copy)
fill the variable now with the current date — now is a snap-shoot of the Date Information
*/

var now = new Date();
// getDay() returns the day of the week as an integer from 0 (Sunday) to 6 (Saturday).
// by using &&, logical operator, we're checking to see if both parts are true
if (now.getDay() > 0 && now.getDay() < 6) {
 document.write("Sorry, it's a weekday.");
}
else {
 document.write("Hooray, it's a weekend!");
}
Good Evening!

// fill the variable now with the current date

var now = new Date();

// getHours() returns the hour from the date object.
// The value returned is between 0 and 23.

if (now.getHours() < 5) {
 document.write("What are you doing up so late?");
}
else if (now.getHours() < 9) {
 document.write("Good Morning!");
}
else if (now.getHours() < 17) {
 document.write("No surfing during working hours!");
}
else {
 document.write("Good Evening!");
}

[image: image2.png]

 INCLUDEPICTURE "http://java/jscript/week2/digits/0.gif" * MERGEFORMATINET [image: image3.png]

 INCLUDEPICTURE "http://java/jscript/week2/digits/colon.gif" * MERGEFORMATINET [image: image4.png]

 INCLUDEPICTURE "http://java/jscript/week2/digits/0.gif" * MERGEFORMATINET [image: image5.png]

 INCLUDEPICTURE "http://java/jscript/week2/digits/7.gif" * MERGEFORMATINET [image: image6.png]

 INCLUDEPICTURE "http://java/jscript/week2/digits/colon.gif" * MERGEFORMATINET [image: image7.png]

 INCLUDEPICTURE "http://java/jscript/week2/digits/0.gif" * MERGEFORMATINET [image: image8.png]

 INCLUDEPICTURE "http://java/jscript/week2/digits/0.gif" * MERGEFORMATINET [image: image9.png]

 INCLUDEPICTURE "http://java/jscript/week2/digits/pm.gif" * MERGEFORMATINET [image: image10.png]

<SCRIPT>

//create a Time Variable then get the hours, minutes, & seconds
var now = new Date();
var hours = now.getHours();
var minutes = now.getMinutes();
var seconds = now.getSeconds();

// am or pm?
var ampm = "am";
// assign an HTML string to the variable colon, this makes it easier to read code later on
var colon = '';

// since hours go from 0 - 23 the hours need to be converted
if (hours >= 12) {
 ampm = "pm";
 hours = hours - 12;
}

// if hour = 0 then convert to 12,
// NOTE: also takes care of the above situation where hours = hours - 12
if (hours == 0) hours = 12;

// if less then 10 we need the "0" placeholder for hours
if (hours < 10) hours = "0" + hours;
else hours = hours + '';

// if less then 10 we need the "0" placeholder for minutes
if (minutes < 10) minutes= "0" + minutes;
else minutes = minutes + '';

// if less then 10 we need the "0" placeholder for seconds
if (seconds < 10) seconds = "0" + seconds;
else seconds = seconds + '';

// once we have the time parts we can then physically write out the time using gifs
document.write('');
document.write('');
document.write(colon);
document.write('');
document.write('');
document.write(colon);
document.write('');
document.write('');
document.write('');

</SCRIPT>

[image: image11.png]

 INCLUDEPICTURE "http://java/jscript/week2/digits/0.gif" * MERGEFORMATINET [image: image12.png]

 INCLUDEPICTURE "http://java/jscript/week2/digits/colon.gif" * MERGEFORMATINET [image: image13.png]

 INCLUDEPICTURE "http://java/jscript/week2/digits/1.gif" * MERGEFORMATINET [image: image14.png]

 INCLUDEPICTURE "http://java/jscript/week2/digits/0.gif" * MERGEFORMATINET [image: image15.png]

 INCLUDEPICTURE "http://java/jscript/week2/digits/colon.gif" * MERGEFORMATINET [image: image16.png]

 INCLUDEPICTURE "http://java/jscript/week2/digits/5.gif" * MERGEFORMATINET [image: image17.png]

 INCLUDEPICTURE "http://java/jscript/week2/digits/9.gif" * MERGEFORMATINET [image: image18.png]

 INCLUDEPICTURE "http://java/jscript/week2/digits/pm.gif" * MERGEFORMATINET [image: image19.png]

<SCRIPT>

// assign an HTML string to the variable colon, this makes it easier to read code later on
var colon = '';

// create the initial HTML images & names so that they can be used by JavaScript later on
document.write('');
document.write('');
document.write(colon);
document.write('');
document.write('');
document.write(colon);
document.write('');
document.write('');
document.write('');

function upDate(){
 // create a Time Variable called now,
 // then get the hours, minutes, & seconds from this variable
 var now = new Date();
 var hours = now.getHours();
 var minutes = now.getMinutes();
 var seconds = now.getSeconds();

 var ampm = "am"; //am or pm?

 // since hours go from 0 - 23 the hours need to be converted
 if (hours >= 12) {
 ampm = "pm";
 hours = hours - 12;
 }

 // if hour = 0 then convert to 12,
 // NOTE: also takes care of the above situation where hours = hours - 12
 if (hours == 0) hours = 12;

 // if less then 10 we need the "0" placeholder for hours
 if (hours < 10) hours = "0" + hours;
 else hours = hours + '';

 // if less then 10 we need the "0" placeholder for minutes
 if (minutes < 10) minutes = "0" + minutes;
 else minutes = minutes + '';

 // if less then 10 we need the "0" placeholder for seconds
 if (seconds < 10) seconds = "0" + seconds;
 else seconds = seconds + '';

 // swap out the old images with the "new images" (the new time)
 document.images['h0'].src = "digits/" + hours.charAt(0) + ".gif";
 document.images['h1'].src = "digits/" + hours.charAt(1) + ".gif";
 document.images['m0'].src = "digits/" + minutes.charAt(0) + ".gif";
 document.images['m1'].src = "digits/" + minutes.charAt(1) + ".gif";
 document.images['s0'].src = "digits/" + seconds.charAt(0) + ".gif";
 document.images['s1'].src = "digits/" + seconds.charAt(1) + ".gif";
 document.images['tod'].src = "digits/" + ampm + ".gif";

 // the window method setTimeout() causes upDate() to run,
 // only after waiting 1000 milliseconds or one second
 // since this call itself is in inside the upDate() it causes upDate to run every sec
 // -- hences making the "time" dynamic
 setTimeout("upDate()", 1000);
}

</SCRIPT>

after "everything" is loaded into memory the upDate() call then triggers the entire process
<BODY onLoad="upDate();">

Looping Password
That's the "phrase"!

Let's go through this example line by line. View Source if you want to see the whole script.

After the typical JavaScript preamble, we start with a couple of variable declarations:

var password = "password";
var answer;

Here we define the password as a string, and we declare a variable called answer. You'll see why we had to declare answer in a second. The next few lines are the important ones:

while (answer != password) {
 answer = prompt("What's the Password?","");
}
This is a while loop. while loops come in this general form:

while (some test is true) {
 do the stuff inside the curly braces
}
So the above lines say, "While the answer isn't equal to the password, execute the prompt command." The loop will keep executing the statements inside the curly brackets until the test is false. In this case, the test will only be false when the words the user enters are the same as the password (that is, "pass the wrench").

We had to declare answer because performing a test like (answer != password) on an undeclared variable will give an error in some browsers. Because answer is given a value by the prompt method inside the while loop, it will have no value the first time we hit the loop. Defining it early gives it an initial value of "".

Although looping indefinitely is often useful, loops are more commonly used to execute a set of statements a specific number of times.

More about While Loops
You should have seen as many x's as you asked for. Let's go over this:

First, we ask for the number of x's:

var width = prompt("How many x's would you like? (1 - 10 is good)", "5");

Next, declare a few variables:

var aLine = "";
var loop = 0;

And now for the important part:

while (loop < width) {
 aLine += "x";
 loop++;
}
This says, "while the variable loop is less than the requested width of the row of x's, add another x to the line and then add one to the value of loop." This loop will keep adding an x to the line and adding one to the value of loop until loop is no longer less than the requested width. Here's a timeline of what happens when a person chooses two x's at the prompt:

Time 1
Start the process

· aLine = "" (because we initialized it to be "")

· loop = 0 (because we initialized it to be 0)

· width = 2 (because that's what the user asked for)

· 0 is less than 2 so

· aLine = aLine + "x", so now aLine = "x"

· loop = loop + 1, so now loop = 1

Time 2
Back into the loop:

· loop = 1

· width = 2

· aLine = "x"

· 1 is less than 2 so

· aLine = aLine + "x", so now aLine = "xx"

· loop = loop + 1, so now loop = 2

Time 3
Back into the loop:

· loop = 2

· width = 2

· aLine = "xx"

· 2 is NOT less than 2 so

· fall out of the loop and do what follows

And what follows is:

alert(aLine);

Throw up an alert box announcing aLine.

This sort of loop is so common that programmers have developed a few shortcuts. Using the shortcuts, the while loop could have been written like this:

while (loop < width) {
 aLine += "x";
// this was aLine = aLine + "x";
 loop++;
// this was loop = loop + 1;
}
The first line, aLine += "x", says "add x to myself." This shortcut works with numbers, too. If you have a_number = 5, and you write, a_number += 3, it's just like writing a_number = a_number + 3. Programmers are lazy; they're always coming up with shortcuts like this.

The next line, loop++, means "add one to myself." So, loop++ is the same as loop = loop +1, which could also be written loop += 1. Each of these is equally good. Which one you use depends on how lazy you are.

Just like there's more than one way to add 1 to a number, there's more than one way to write a loop. while loops aren't the only kind of loops out there. Another popular one is the for loop.

All about for loops

There are a few different types of loops, but the most commonly used type is called a "for" loop and that's what we'll focus on. A simple one looks like this:

for (x = 1; x < 11; x++) {
 alert("I have now counted to: " + x);
}

for loops come in this form:

for (initial value; test; increment) {
 do something;
}

Even if you don't completely understand the way this is written, you may already have an idea how annoying this loop is. Regardless, please click the button below to see what loops are all about:

Top of Form

Bottom of Form

Dissecting the "for" loop
You can probably determine from our discussion of curly brackets, that the commands inside the curly brackets are controlled by whatever goes on in the "for" statement. So, the trickiest part of this command is understanding the "for" statement, which looks like this:

for (x = 1; x < 11; x++)

As you can see, the "for" command is followed by three mathematical or logical statements separated by semi-colons and enclosed in a single set of parentheses. Each of these three statements means something very specific:

The first statement creates a variable called "x" and sets it to a starting value of 1.

The next statement is treated as a logical statement and the loop will repeat as long as this logical statement evaluates to true. In this case, the logical statement is: "x < 11" and this means that the loop will repeat for as long as x equals a number less than 11.

The last statement tells how the variable "x" should change each time the loop repeats. The use of a double plus sign is a programming convention that just means "add one to this number." So the value of x goes up by one every time the loop repeats.

Each of the three statements following the "for" command relates to the value of the variable "x", so here's a one-line summary of what each of them does with the value of this variable. The "for" loop is a tough thing to memorize, so you may want to write this down as a cheat sheet to use when creating "for" loops.

for (set starting value; test for cut-off value; increase value by 1 each time)

The behavior of the script in the example above should start to become clear by now.

It begins by setting x equal to 1. Then it executes the alert() Method and tells everyone that it has counted to 1. Then it comes around the loop again and checks to see if x is greater than 10 yet. When it finds that x is still not greater than 10, it increases the value of x by 1 (so now x = 2) and once again it executes the alert() Method, this time announcing that it has counted to 2. This process continues with x increasing by one every time until x = 11 and because x is no longer less than 11, it finally fails the cut-off test and the loop quits.

Beware the infinite loop.
You may soon discover that it's always a good idea to be very sure that the cut off value is reachable. Consider the consequences of a loop like this:

for (x = 5; x > 2; x++)

Since it begins by setting x = 5, and it makes x greater by 1 each time through, x will never be less than 2, which is the cut-off condition for the loop. This is referred to as an infinite loop. It's a bad thing. You'll probably need to press Ctl+Alt+Del (PC) or Command-Period (Mac) to shut it down. If you've accidentally created an infinite loop in your program, you may be very confused why your machine is doing nothing and won't respond to any command. It's too busy looping, and looping....

Looping Function
Calculating the sum of the digits

Top of Form

The sum of the digits from 1 to: [image: image20.wmf]

Bottom of Form

<SCRIPT>
function sumDigits(num) {
 var i, sum = 0; // can declare two variables at once

 for (i = 1; i <= num; i++) {
 sum += i; // add each number to sum (ie, 1 + 2 + ...+ num)
 }

 // Display result
 alert("The sum of the digits from 1 to "+ num + " is:\n\n\t " + sum);
}

</SCRIPT>

<BODY>

Looping Functions - Calculate the sum of the digits.

<FORM NAME="SumNums">
 The sum of the digits from 1 to:
 <INPUT TYPE="text" NAME="charNum">
 <INPUT TYPE="button" VALUE="Calculate"
 onClick="sumDigits(SumNums.charNum.value)">
</FORM>

NOTE: sumDigits() brute forces the answers, the Mathematical approach would be to use the Formula:

n (n + 1) / 2.

Nested Loops

var height = prompt("How high do you want the grid? (1 - 10 is good)", "10");
var width = prompt("How wide do you want the grid? (1 - 10 is good)", "10");
var aLine;

var newWindow = window.open("grid.htm", "looper", "width=400,height=400");

newWindow.document.write("<H1>A Grid</H1>");

	for (i = 0; i < height; i++) {

	 aLine = "";

	 for (j = 0; j < width; j++) {

	 aLine += "x";

	 }

	 newWindow.document.write(aLine + "
");

	}

After asking for height and width, opening a new window, and writing a header to it, we go into a for loop. The first for loop sets aLine = "". Try doing the example without this line and see what happens.

After initializing aLine, the script goes into another for loop to build a line of x's as wide as required and prints it out to the new window. This happens height times.

Multiplication Table
Using Nested Loops

 1 2 3 4 5 6 7 8 9
 2 4 6 8 10 12 14 16 18
 3 6 9 12 15 18 21 24 27
 4 8 12 16 20 24 28 32 36
 5 10 15 20 25 30 35 40 45
 6 12 18 24 30 36 42 48 54
 7 14 21 28 35 42 49 56 63
 8 16 24 32 40 48 56 64 72
 9 18 27 36 45 54 63 72 81
 10 20 30 40 50 60 70 80 90

<SCRIPT>

// Use single-spaced text for Multiplication table
document.write("<CENTER><BLOCKQUOTE><PRE>)

var i, j, total; // global variables

for (i = 1; i <= 10; i++) {
 for (j = 1; j < 10; j++) {
 total = i * j;
 total = " " + total //add space before each number

 // Add another space before single digits
 if (total < 10) total = " " + total;

 // Display result
 document.write(total);
 } // end inner j loop

 document.write("
"); // end of line break
 } // end of i outer loop

document.write("</PRE></BLOCKQUOTE></CENTER>");

</SCRIPT>

for (i = 1; i <= 10; i++) { // when i = 1
 for (j = 1; j < 10; j++) {

 when j = 1 => i * j = 1 * 1 = 1
 when j = 2 => i * j = 1 * 2 = 2
 when j = 3 => i * j = 1 * 3 = 3
 etc...
 when j = 10 => i * j = 1 * 10 = 10
break out of the inner loop & go back to the outer loop

for (i = 1; i <= 10; i++) { // when i = 2
 for (j = 1; j < 10; j++) {

 when j = 1 => i * j = 2 * 1 = 2
 when j = 2 => i * j = 2 * 2 = 4
 when j = 3 => i * j = 2 * 3 = 6
 etc...
 when j = 10 => i * j = 2 * 10 = 20
break out of the inner loop & go back to the outer loop

etc...

for (i = 1; i <= 10; i++) { // when i = 10
 for (j = 1; j < 10; j++) {

 when j = 1 => i * j = 10 * 1 = 10
 when j = 2 => i * j = 10 * 2 = 20
 when j = 3 => i * j = 10 * 3 = 30
 etc...
 when j = 10 => i * j = 10 * 10 = 100

Finished at this point

So what exactly is a Function?
Functions are the last bit of basic programming you need to know before you can understand and perform your own serious JavaScripting. All programming languages have functions. Functions, or subroutines, as they're sometimes called, are bits of JavaScript that you can call over and over without having to rewrite them every time.

A Function is something that can take an input value and give an output and/or return a value in response to it. When you send a value to a Function, it's called "passing" a value. When a Function returns a value, it's called "returning" a value. Although, you have already seen examples of this, it's worthwhile to review both of these actions here in more detail a little later on.

JavaScript includes several Built-in Functions as well as Methods of base Objects. You have already seen these when you used alert(), document.write(), parseInt(), or any of the other Methods and functions you’ve been working with.

Functions with no Parameters
Let's go on to the functions in the example listed below. If you View Source, you'll see the functions sitting in the head of the HTML document. Here it is:

<SCRIPT>

function Abe() {
 var abe = "Four score and seven years ago ...";
 alert(abe);
}

function JFK() {
 alert("Ask not what your country can do for you...");
}

function RMN() {
 alert("I am not a crook ...");
}
</SCRIPT>

<BODY>

Famous Presidential Quotes

<FORM>
 <INPUT TYPE="BUTTON" VALUE="Lincoln" onClick="Abe()">
 <INPUT TYPE="BUTTON" VALUE="Kennedy" onClick="JFK()">
 <INPUT TYPE="BUTTON" VALUE="Nixon" onClick="RMN()">
</FORM>
OK, let's go over this function. First, all functions come in this format:

function functionName(parameter list) {
 statements ...
}
Functions' naming rules are the same as those for variables. The first character has to be a letter or an underscore. The rest of the characters can be numbers or underscore. Also, you must make sure you don't name a function the same as a variable. If you do, you'll get really strange, hard to debug, results. I use internal capitalization for my function names to make sure I don't accidentally name a function and a variable the same thing.

After the function name comes a list of parameters. This function has no parameters, so I'll hold off describing parameters until the examples below.

Functions with parameters - passing arguments
You can pass a value to a Function by calling the Function and including the value you want to pass within the parentheses that follow the Function's name. Such values are called arguments. It's done like this:

doSomething("this is the argument I'm passing");

The quotation marks are only necessary if you're passing a value that happens to be a text string. If you're passing a number or a variable, you wouldn't use quotation marks.

Functions can be set up to accept arguments that are sent to them by including a variable name in the parentheses that follow the name of the Function when it is being declared. When you do this, the Function will treat the variable throughout the rest of the Function as equal to whatever argument is passed to it.

Here's an example of a Function that is set up to accept an argument.

function printName(name) {
 document.write("<HR>Your Name is <I>");
 document.write (name);
 document.write("</I><HR>");

}
<SCRIPT>

var name = prompt("What is your name?", "Your Name");
printName(name);

</SCRIPT>
In this Function, name takes on the value of anything that is passed to the Function. Therefore, this Function "writes" the name that was sent to it.

Note: variables, literals, and Objects can be passed as arguments when calling a function. Objects Properties & Methods are also available to function.

function printName(name) {
 document.write("<HR>Your Name is <I>");
 document.write(name);
 document.write("</I><HR>");
}

NOTE: name in this instance is just a placeholder. What we are saying is, wherever name exist put the passed argument here. We can use any name we want as illustrated below.

function printName(koala) {
 document.write("<HR>Your Name is <I>");
 document.write(koala);
 document.write("</I><HR>");
}

Another Example - passing multiple arguments.
<SCRIPT>

 5 3
 | |
function example([], <>) {
 var total;

 5 3
 | |
 total = [] + <>;

 5 3
 | |
 alert([] + " + " + <> + " = " + total);
 // with [] + " + " we are concatenating [] with the string " + " ==> 5 +

}

</SCRIPT>

<FORM>
 5 + 3 <INPUT TYPE="button" VALUE=" = " onClick="example(5, 3);">
</FORM>

Five Variations of passing "information" to a function:
Original Script

<FORM>
 <INPUT TYPE="button" VALUE="Lincoln"
 onClick="alert('Four score and seven years ago...');">
 <INPUT TYPE="button" VALUE="Kennedy"
 onClick="alert('Ask not what your country can do for you...');">
 <INPUT TYPE="button" VALUE="Nixon"
 onClick="alert('I am not a crook...');">
</FORM>

Example 1

<SCRIPT>

function Quotes(message) {
 alert(message);
}

</SCRIPT>

<FORM>
 <INPUT TYPE="button" VALUE="Lincoln"
 onClick=" Quotes ('Four score and seven years ago...');">
 <INPUT TYPE="button" VALUE="Kennedy"
 onClick=" Quotes ('Ask not what your country can do for you...');">
 <INPUT TYPE="button" VALUE="Nixon"
 onClick=" Quotes ('I am not a crook...');">
</FORM>

Example 2

<SCRIPT>

var Abe = "Four score and seven years ago ...";
var JFK = "Ask not what your country can do for you...";
var Nixon = "I am not a crook ..";

function Quotes(message) {
 alert(message);
}

</SCRIPT>

<FORM>
 <INPUT TYPE="BUTTON" VALUE="Lincoln" onClick="Quotes(Abe);">
 <INPUT TYPE="BUTTON" VALUE="Kennedy" onClick="Quotes(JFK);">
 <INPUT TYPE="BUTTON" VALUE="Nixon" onClick="Quotes(Nixon);">
</FORM>

 Example 3

<SCRIPT>

function Quotes(btn) {
 if (btn.value == "Lincoln") { // here we're checking the Button's VALUE
 alert("Four score and seven years ago ...");
 }
 else if (btn.value == "Kennedy") { // here we're checking the Button's VALUE
 alert("Ask not what your country can do for you...");
 }
 else {
 alert("I am not a crook ..");
 }
}

</SCRIPT>

<FORM>
 <NPUT TYPE="BUTTON" VALUE="Lincoln" onClick="Quotes(this);">
 <INPUT TYPE="BUTTON" VALUE="Kennedy" onClick="Quotes(this);">
 <INPUT TYPE="BUTTON" VALUE="Nixon" onClick="Quotes(this);">
</FORM>

Example 4

<SCRIPT>

function Quotes(btn) {
 if (btn.name == "Lincoln") { // here we're checking the Button's NAME
 alert("Four score and seven years ago ...");
 }
 else if (btn.value == "JFK") { // here we're checking the Button's VALUE
 alert("Ask not what your country can do for you ...");
 }
 else {
 Quotes ("I am not a crook ...");
 }
}

</SCRIPT>

<FORM>
 <INPUT TYPE="BUTTON" VALUE="Lincoln" NAME="Lincoln"
 onClick="Quotes(this);">
 <INPUT TYPE="BUTTON" VALUE="JFK" NAME="Kennedy"
 onClick="Quotes(this);">
 <INPUT TYPE="BUTTON" VALUE="Nixon" NAME="Nixon"
 onClick="Quotes(this);">
</FORM>

Example 5

<SCRIPT>

function ValidateInput(form) {
 var LB = “\n”;
 var msgHdr = "Please fill out your:" + LB + LB;
 var msg = "";

 if (form.First.value.length == 0) msg += "First Name" + LB;
 if (form.Last.value == "") msg += "Last Name" + LB;

 etc…

 if (msg.length > 0) {
 alert(msgHdr + msg);
 return false;
 }
 else return true;
}

</SCRIPT>

<FORM
 NAME="vForm"
 METHOD="POST"
 ACTION="formmail.pl"
 onSubmit="return ValidateInput(this)">
 etc...
 <INPUT TYPE="Submit" VALUE="Submit Query">
 <INPUT TYPE="Reset" VALUE="Reset">
</FORM>

If a variable is passed to the function, changing the value of the parameter within the function does not change the value of the variable passed to the function.

Parameters exist only for the life of the function – if you call the function, and values they held when the function last ended are retained.

If you were to add the line below to printName(user) changing the value of name:

name = "Mr. " + user;

name would change, but variable user, which was sent as an argument, would not change.

this keyword
The keyword this needs some explanation. this refers to this object, whatever that happens to be. It could be an entire form or just a text field or button.

<INPUT TYPE="BUTTON" VALUE="Lincoln" NAME="Lincoln"
 onClick="Quotes(this)">
this refers to the button Object and all its Properties (VALUE="Lincoln" NAME="Lincoln") and all its Methods (in this case the button doesn't have any Methods associated with it)

<FORM NAME="FormInfo" METHOD="POST" ACTION="JMail.asp"
 onSubmit="return ValidateInput(this)">
this refers to the Form (FormInfo) and all its Properties and Methods and all the of the Form's elements and their Properties and Methods. Wherever "this" finds itself, that is what "this" is referring to, from the opening to the closing tags whatever they happen to be. For a form that happens to be <FORM...> ...</FORM>, and for form elements that happens to be <INPUT...>.

<INPUT TYPE="BUTTON" VALUE="Lincoln" NAME="Lincoln"
 onClick="Quotes(this.form)">
this.form passes the Form to the function Quotes(), instead of "just" the button.

<INPUT TYPE="BUTTON" VALUE="Lincoln" NAME="Lincoln"
 onClick="Quotes(this.name)">
this.name passes the button's Property NAME="Lincoln" to the function Quotes().

Returning values
As we have seen, Functions are also capable of returning values. This is done by using the return command:

function returnDate() {
 var today = prompt("What is today?", "");
 return today;
}
This Function asks the user to input the name of the current day and then returns that value.

Now, when a Function returns a value, the Function takes on that returned value. This may be a little hard to understand, so here's an example that helps to explain:

var dayName = returnDate();

In this example, we didn't just call a Function, we actually created a variable called dayName and set it equal to the Function. This causes the Function to be called, and it also puts the return value of that Function into the variable dayName.

Also note that Functions stop executing after they execute a return command, so anything that comes after a return command will be ignored.

Note: The return statement can be used to return any valid expression that evaluates to a single value.

function getCube(number) {
 var cube = number * number * number;
 return cube;
}
the return statement will return the value of the variable cube. This function could just as easily have been written like this:

function getCube(number) {
 return number * number * number;
}
This works because the expression number * number * number evaluates to a single value.

Multiple Returns
You can have more than one return statement in your function so that you can return different "things" depending upon what has happened within the function.

The next example calls a function which displays the Confirm box. The user clicks the OK or Cancel button. There are two different return statements depending on which button is clicked.
<SCRIPT>

function function1() {

 var bResultReturned = confirm("Click OK or cancel.");

 if (bResultReturned) return "You pressed the OK button";

 else return "You pressed the Cancel button";

}

</SCRIPT>

<SCRIPT>

var sText = function1()

document.write("<P><H3>" + sText + "</H3><P>")

</SCRIPT>

Variable Scope
name exists only within the function printName() – cannot be referred to or manipulated outside the function. It comes into existence when the function is called and ceases to exist when the function ends. If the function is called again, a new instance of name is created.

In addition, any variable declared using the var varName within the function will have a scope limited the function.

If a variable is declared outside the body of a function, it is available throughout a script – inside all functions and elsewhere.

Variables declared within a function are known as local variables. Variable declared outside functions and available throughout the script are known as global variables.

If you declare a local variable inside a function that has the same name as an existing global variable, then inside the function, that variable name refers to the new local variable and not the global variable. If you change the value of the variable inside the function, it does not affect the value of the global variable.

Local -vs- Global Variables
Variables can be either global or local.

· Global variables once seen, are visible from any part of the same page and can be accessed by other functions and statements. Global variables are defined outside of a function. Making a variable global requires declaring the variable before the first function within <SCRIPT></SCRIPT> tags.

· Local means that the variable was declared within a function and is only available to that specific function. Once the function terminates the local variable ceases to exist.

In the following example, a global and a local variable are declared.

<SCRIPT>

var globalvar1 = 5;

function fivetimestwo() {
 var localvar1 = 2 * globalvar1;
 alert("Five times two is " + localvar1);
}
</SCRIPT>

The global variable is called globalvar1, and is declared before the function fivetimestwo() is defined. The local variable, localvar1, is able to use the value of globalvar1 and multiply it by two. The alert() method is then used to display a warning box with the text "Five times two is 10." If a second function followed fivetimestwo(), it would be able to use the globalvar1 variable, but the localvar1 variable would not be recognized. The keyword should only be used for declaring a variable so that once you declare: var globalvar1 = 5, if you want to change the value later in the script you would simply say: globalvar1 = 8.

Click on the Display1 button, read the message box and close it. Then click on the Display2 button - read and close. Then click on the Display1 button again.

<SCRIPT>
var func1 = "This is the global variable named func1";

function Display1() {

 alert(func1);

}

function Display2() {

 func1 = "This is local variable named func1";

 alert(func1);

}
</SCRIPT>

<FORM>

 <INPUT TYPE="button" NAME="ButtonDisplay1" VALUE="Display1"

 onClick="Display1()">

 <INPUT TYPE="button" NAME="ButtonDisplay2" VALUE="Display2"

 onClick="Display2()">

</FORM>

NOTE: func1 is a global variable. In Display2() func1's value gets changed. To make func1 in Display2() a local variable we need to declare the variable within the function.
function Display2() {
 var func1 = "This is local variable named func1"; // now func1 is a local variable

Functions & their locations within a document
This ensures that all functions have been parsed before it possible for user events to invoke a function. This is especially relevant once you begin working with Event Handlers where incorrect placement of a function definition can mean an event can lead to a function call when the function has not been evaluated and the browser doesn’t know it exists. When this happens, it causes an error message to be displayed.

Parsed refer to the process by which the JavaScript interpreter evaluates each line of script code and converts into a pseudo-compiled Byte Code (much like Java), before attempting to execute it. At this time, syntax errors and other programming mistakes that would prevent the script form running may be caught and reported to the user or programmer.

Example 1

SCRIPT>

function1();

function function1() {

 alert("This is function1 running.");

}

</ SCRIPT >

You saw an Alert box created by function1(). The function named function1() is called as soon as the <HEAD> section has been loaded. As you can see from the script below, this displays an alert box. Notice, however, that the function call appears before the function definition - it appears that we have used the function before we created it.

Example 2

<SCRIPT>

function1();

</ SCRIPT >

< SCRIPT >

function function1() {

 alert("This is function1 running.");

}

</ SCRIPT >

Yes, we know you saw an error message saying "function1 is not defined" when you opened this page... That's because the function is called in a script before the script in which function1() is defined.

Example 3

<SCRIPT>

function function1() {

 alert("This is function1 running.");

}

</SCRIPT>

<SCRIPT>

function1();

</SCRIPT>

This is for comparison with the previous example. The function is now called from a block of code that comes after the function has been defined... so now it works okay.

Functions at Work

Let’s rework:

<SCRIPT>

var question = "What is 10 + 10?";
var answer = 20;
var correct = '';
var incorrec = '';

var response = prompt(question, "0");

var output = (response == answer) ? correct : incorrec;

</SCRIPT>

<BODY>

<SCRIPT>

document.write(output);

</SCRIPT>

by creating a function that receives a question as an argument, poses the question, checks the answer, and returns an output string based on the accuracy of the user’s response.

Annotated Version

<SCRIPT>

var question = "What is 10 + 10?"; // create the question
var answer = 20;
var correct = ''; // "correct" gif for the answer is correct
var incorrec = ''; // "incorrec" gif for the answer is wrong

// ask the question
var response = prompt(question, "0");

// "return" the "correct" gif if the person gets the answer right else
// "return" the "incorrec" gif if the person gets the answer wrong
// output is a global variable that is available to the entire page
var output = (response == answer) ? correct : incorrec;

</SCRIPT>

<SCRIPT>

// output the results - either the correct.gif or incorrec.gif
document.write(output);

</SCRIPT>

Remember - everything gets evaluated from top to bottom. Steps:

1. Create the variables

2. Ask the question

3. Evaluate the result

4. Assign the result to output

5. Write out the output
Revised Version 1

<SCRIPT>

function testQuestion(question) {
 var answer = eval(question);
 var output = "What is " + question + "?";

 var correct = '';
 var incorrec = '';

 var response = prompt(output, "0");

 return (response == answer) ? correct : incorrec;

}

</SCRIPT>

<SCRIPT>

var result = testQuestion("10 + 10");

document.write(result);

</SCRIPT>

Annotated Version

function testQuestion(question) {
 var answer = eval(question); // evaluates the string & returns 10
 var output = "What is " + question + "?"; //creates the question string

 var correct = ''; // "correct" gif for the answer is correct
 var incorrec = ''; // "incorrec" gif for the answer is wrong

 var response = prompt(output, "0"); // ask the question

 // return the "correct" gif if the person gets the answer right else
 // return the "incorrec" gif if the person gets the answer wrong
 return (response == answer) ? correct : incorrec;

}

</SCRIPT>

<BODY>

<SCRIPT>

// call the function testQuestion() and pass the string argument "10 + 10"
// and return the "result" back to variable result
var result = testQuestion("10 + 10");
 |__________
 |
document.write(result); // output the results - either the correct.gif or incorrec.gif

</SCRIPT>

Steps:

1. function testQuestion() is in memory for use

2. call testQuestion() and pass the string argument "10 + 10" & return the "result" back to the variable result

3. Write out the "result" to the page

This script seems to look more complicated, but it simply separates the work into logical blocks and moves most of the work into the function testQuestion().

eval() Method executes JavaScript code from string. Returns the value of the evaluated code, if any. It can evaluate a string to a numeric value; for instance:

eval("10 + 10") returns a numeric value of 20

Uses the conditional operator to check the user’s response. The resulting value is returned by the return command

return (response == answer) ? correct : incorrect;

The function testQuestion() gets called and it passes a string. testQuestion returns a result which is stored in the variable result, which then is outputted using document.write().

var result = testQuestion("10 + 10");

document.write(result);

The last two lines could be condensed into a single line:

document.write(testQuestion("10 + 10"));

Recursive Functions
Recursive refers to situations in which functions call themselves.

5! = 5 x 4 x 3 x 2 x 1

function factorial(N) {
 if (N > 1) return N * factorial(N - 1);
 else return N;
}

This function relies on the fact that the factorial of a number is equal to the number multiplied by the factorial of one less than the number. Expressed mathematically, this could be written:

x! = x * (x – 1)!

Which is what factorial() does. factorial() returns a value of 1 if the argument is equal to 1 or applies the formula and returns the number multiplied by the factorial of one less than the number.

Note: recursive functions are powerful, but they can be dangerous if you don’t watch out for infinite recursion. Infinite recursion occurs when the function calls itself forever without stopping.

In JavaScript infinite recursion isn’t likely to happen because of the way in which JavaScript handles some memory allocation. This means that deep recursions, even if they aren’t infinite, may cause the browser to crash.

factorial() prevents infinite recursion because the if - else ensures that eventually the function will stop calling itself once the number passed to it is equal to one.

Using recursive functions, it is possible to extend the program used in the example above so that it continues to ask the question until the users provides the correct answer as in

Revised Version 2

<SCRIPT>

function testQuestion(question) {
 var answer = eval(question);
 var output = "What is " + question + "?";
 var correct = '';

 var response = prompt(output, "0");

 return (response == answer) ? correct : testQuestion(question);
}

</SCRIPT>

<SCRIPT>

var result = testQuestion("10 + 10");

document.write(result);

</SCRIPT>

Notice the single change to the conditional expression:

return (response == answer) ? correct : testQuestion(question);

Now instead of returning the incorrect variable for an incorrect, the returned result is the asking of the question again (by calling the testQuestion() again).

Note: it is important to realize that this example could cause JavaScript to crash because of its memory handling problems if the user never provides the correct answer. This can be solved by adding a counter to keep track of the number of chances the user has to provide a correct answer:

Revised Version 3

<SCRIPT>

function testQuestion(question, chances) {
 var answer = eval(question);
 var output = "What is " + question + "?";

 var correct = '';
 var incorrec = '';

 var response = prompt(output, "0");

 if (chances > 1) {
 return (response == answer) ? correct : testQuestion(question, chances - 1);
 }
 else return (response == answer) ? correct : incorrec;
 }

</SCRIPT>

<SCRIPT>

var result = testQuestion("10 + 10", 3);

document.write(result);

</SCRIPT>

return (response == answer) ? correct : testQuestion(question, chances – 1)

If the user’s response is correct (response == answer) it returns the value correct. Otherwise, if there are chances left (chances > 1) ask the question again and return the result. If there are no chances left and the answer is incorrect, return the value of the variable incorrect.

Military or Civilian Time?

Top of Form

[image: image21.wmf]

21:07:45

Display Military Time? [image: image22.wmf]

Yes [image: image23.wmf]No

Bottom of Form

function showMilitaryTime() {
 if (document.theForm.showMilitary[0].checked) return true;
 return false;
}

function showTheHours(theHour) {
 if (showMilitaryTime() || (theHour > 0 && theHour < 13)) return (theHour);
 if (theHour == 0) return (12);

 return (theHour - 12);
}

function showZeroFilled(inValue) {
 if (inValue > 9) return ":" + inValue;
 return ":0" + inValue;
}

function showAmPm() {
 if (showMilitaryTime()) return ("");
 if (now.getHours() < 12) return (" am");
 return (" pm");
}

function showTheTime() {
 var now = new Date();

 document.theForm.showTime.value =
 showTheHours(now.getHours()) +
 showZeroFilled(now.getMinutes()) +
 showZeroFilled(now.getSeconds()) +
 showAmPm();

 setTimeout("showTheTime()", 1000);
}
<BODY onLoad="showTheTime()">

<FORM NAME="theForm">
 <INPUT TYPE="TEXT" NAME="showTime">
 Display Military Time?
 <INPUT TYPE="RADIO" NAME="showMilitary" CHECKED>Yes
 <INPUT TYPE="RADIO" NAME="showMilitary">No
</FORM>

Annotated Version

Bottom of Form

/* checks to see which radio button in the form the user has checked. If the document's form element is checked, then it should return a true result, otherwise returns false */

function showMilitaryTime() {
/* since the radio buttons are an array, we have to use array notation in order to refer to a particular radio button */
 if (document.theForm.showMilitary[0].checked) return true;
 return false;
}

// Display the time either as Military Time or as the "normal" time

function showTheHours(theHour) {
 if (showMilitaryTime() || (theHour > 0 && theHour < 13)) return (theHour);
 if (theHour == 0) return (12);
 return (theHour - 12);
}
// This function pads the output with :0 if the time (secs & mins) < 10

function showZeroFilled(inValue) {
 if (inValue > 9) return ":" + inValue;
 return ":0" + inValue;
}
// add AM or PM to 12 - hour time, if showMilitaryTime is true, move on

function showAmPm() {
 if (showMilitaryTime()) return ("");
 if (now.getHours() < 12) return (" am");
 return (" pm");
}
// the Main Function - setTimeout() tells the display to update every second

function showTheTime() {
 var now = new Date();

 document.theForm.showTime.value =
 showTheHours(now.getHours()) +
 showZeroFilled(now.getMinutes()) +
 showZeroFilled(now.getSeconds()) +
 showAmPm();

 setTimeout("showTheTime()",1000);
}
showTheTime() gets loaded after the document is loaded with the onLoad
<BODY onLoad="showTheTime()">

<FORM NAME="theForm">
 <INPUT TYPE="TEXT" NAME="showTime">
 Display Military Time?
the radio buttons act as an array in this case, with the first radio button being checked,
an array in this case means that when you check one of the buttons the other one automatically gets unchecked
 <INPUT TYPE="RADIO" NAME="showMilitary" CHECKED>Yes
 <INPUT TYPE="RADIO" NAME="showMilitary">No
</FORM>

There's more than one way to call a Function

The act of triggering a Function is referred to as "calling" a Function. There are a variety of ways you can do this.

Mouse actions are among the most common type of Events that are used to call Functions, but onLoad Events are also used frequently. If you want something to happen when a page is finished loading, you can put an onLoad Event Handler into the <BODY> tag and use it to call a Function, like this:

<BODY onLoad="doSomething();">

Using the onLoad Event Handler is a good way to initiate an action as soon as the page loads. You can run two or more scripts with the onLoad function at the same time.

In the rest of this section, we'll see that using an Event Handler isn't the only way to call a Function.

Calling Functions from within scripts
If you want a Function to execute immediately upon being read, without waiting for the rest of the page to load, you can add a line to the script section in the head section of the HTML document that merely contains the name of the Function. The Function will be called as soon as that line is read.

If you do this, it's a good idea to make sure you've already declared the Function at an earlier point in the script, or else there will be an error when JavaScript tries to call a Function that doesn't exist yet (because it hasn't even been read yet).

Here's an example of how to call a Function from within the main script area of the <HEAD> section of an HTML document:

<SCRIPT>

function doSomething() {
 alert("I'm doing something.");
}

doSomething();

</SCRIPT>

This Function would pop up an alert box stating "I'm doing something." before the body of the page has even loaded into the browser. Although this is a relatively pointless thing to do, we will soon see examples where this sort of technique makes sense.

You can call a Function within the body section of an HTML document by using the <SCRIPT> </SCRIPT>tags. We've already seen some examples of this in previous modules. This is done as follows:

This is some ordinary Web content.

<SCRIPT>

alert("Just loaded ordinary Web content, about to load more.");

</SCRIPT>

Here's some more ordinary Web content.

This approach, where you add <SCRIPT> </SCRIPT> tags alongside ordinary HTML tags, is especially useful if you're using the document.write() Method, since the Method will begin writing at that specific point in the HTML document while it is in the process of loading.

Calling a Function from within a Function
Finally, a Function can be called from within another Function, merely by including its name in a line of that Function. Here's how that looks:

<SCRIPT>

function functionA() {
 alert("I'm about to call Function B.");
 functionB();
}

function functionB() {
 alert("I'm Function B and I've just been called.");
}

</SCRIPT>

Calling Functions from within other Functions is one of the most common ways that Functions are called.

Ultimately, however, it always takes a user action (an Event) somewhere at the beginning to get the ball rolling.
54

_1041279868.unknown

_1041280156.unknown

_1041279866.unknown

_1041279864.unknown

