What is JavaScript?

Here's the short answer: JavaScript is the leading client-side scripting language for use on Web pages.

So, what does that mean?

· JavaScript is a scripting language, and scripting languages are easier to learn and use than traditional programming languages.

· JavaScript works on the client side, which means that it runs on the user's computer and not on the Web server. The browsers interprets JavaScript statements embedded directly in an HTML page.

· JavaScript is designed for use on Web pages and is closely integrated with HTML.

· JavaScript statements embedded in an HTML page can recognize and respond to User Events such as Mouse Clicks, Form Input, and Page Navigation.

For example, you can write a JavaScript function to verify that users enter valid information into a form requesting a telephone number or zip code. Without any network transmission, an HTML page with embedded JavaScript can interpret the entered text and alert the user with a message dialog if the input is invalid. Or you can use JavaScript to perform an action (such as play an audio file, execute an applet, or communicate with a plug-in) in response to the user opening or exiting a page.

Here's the long answer:

· A scripting language

Scripting languages have been in use long before the Web came around. In Unix environment, scripts have been used to perform repetitive system administration tasks and to automate many tasks for less computer-literate users. In addition, scripting languages are the basis of much of the cgi-bin programming that is currently used to add limited form of interactivity to Web pages.

Of course, this still doesn’t tell what the main advantages of scripting languages are. Like all scripting languages, JavaScript is interpreted, which provides an easy development process; it contains a limited and easy-to-learn command set and syntax; and it is designed for performing a well-defined set of tasks.

· Designed for Simple, Small Programs

Because JavaScript is a scripting language, it is well suited to implementing simple, small programs. For instance, JavaScript would ideally be suited to developing a unit conversion calculator between miles and kilometers or pounds and kilograms. These tasks can be easily written and performed at acceptable speeds with JavaScript and would be easily integrated into a Web page. A more robust language such as Java would be less suitable for the quick development and easy maintenance of these types of applications.

By contrast, JavaScript would not be well suited to implementing a distributed CAD document display and manipulation environment. While eventually JavaScript will be a tool for integrating this type of Java applet or plug-in into a Web page, to attempt to develop the actual applet in JavaScript would at best, difficult and inefficient and, more likely, would be impossible.

· Performs Repetitive Tasks

Just as JavaScript is suited to producing small programs, it is especially well designed for repetitive, event-invoked tasks. For example, JavaScript is ideal for calculating the content of on field in a form based on changes to the data in another field. Each time the data changes, the JavaScript program to handle the event is invoked, and the new data for the other field is calculated and displayed.

· Designed for Programming User Events

Because of the way in which JavaScript is integrated into the browser and can interact directly with the HTML pages, JavaScript makes it possible to program responses to user events such as mouse clicks and data entry in forms.

For instance, a JavaScript script could be used to implement a simple help system. Whenever the user points a button or a link on the page, a helpful and informative message can be displayed in the bar at the bottom of the browser window.

This adds interactivity to Web pages, makes forms dynamic, and can decrease the bandwidth requirements and server load incurred by using forms and CGI programming.

· Easy Debugging and Testing

Like other scripting languages, JavaScript eases development and trouble-shooting because it is not compiled. It is easy to test program code, look at the results, make changes, and test it again without the overhead and delay of compiling.

· Live Connect

LiveConnect enables communication between JavaScript and Java applets in a page and between JavaScript and Plug-ins loaded on a page. JavaScript can trigger events in Java applets, and Java applets can call JavaScript methods and functions.

Summary of JavaScript Strengths
JavaScript offers several strengths to the programmer including a short development cycle, ease of learning, and small size scripts. These strengths mean that JavaScript can be easily and quickly used to extend HTML pages already on the web.

· Quick Development – because of JavaScript does not require time-consuming compilation, scripts can be developed in a relatively short period of time. This is enhanced by the fact that most of the interface features, such as dialog boxes, forms, and other GUI elements, are handled by the browser and HTML code. JavaScript programmers don’t have to worry about creating or handling these elements of their applications.

· Easy to Learn – while JavaScript may share many similarities with Java, it doesn’t include the complex syntax and rules of Java. By learning just a few commands and simple rules of syntax, along with understanding the way objects are used in JavaScript, it is possible to begin creating fairly sophisticated programs.

· Platform Independence – Because the WWW, by its very nature, is platform-independent, JavaScript programs created for the browsers are not tied to any specific hardware platform or operating system. The same program code can be used on any platform for which a browser is available.

· Small Overhead – JavaScript programs tend to be fairly compact and are quite small, compared to the binary applets produced by Java. This minimizes storage requirements on the server and download times for the user. In addition, because JavaScript programs usually are included in the same file as the HTML code for a page, they require fewer network accesses.

Weakness of JavaScript
As would be expected, JavaScript has it own unique weaknesses. These include limited set of built-in methods, the inability to protect source code from prying eyes.

· Limited Range of Built-in Methods

· Generally, only client-side script

· No Code Hiding

What can't you do with JavaScript?
You cannot access or write to server files, and thus JavaScript is not a substitute for CGI scripts, although it can perform many functions that previously were available only through CGI scripts (such as form validation and dynamic generation of HTML).

You do, however, have access to documents that are loaded into other browser windows and frames, provided that the documents are from the same server. So a script in one frame can read and modify properties in another frame. And when I say 'modify' I mean modify them as they are presented to the user; the files themselves are not changed.

You also cannot touch the local hard drive, send a print job, or edit the user's bookmarks or browser preferences. NOTE: The exception are cookies – which JavaScript can read from the hard drive and write to the hard drive.

You cannot alter the text on an HTML page without reloading the entire document. Parts of the page that can be modified without reloading include images, form elements, and background color.

Java -vs- JavaScript
Despite the unfortunate naming which causes a lot of confusion, there's a huge difference between Java and JavaScript.

One possible cause of confusion is that Java is an object-oriented language and JavaScript is an object-based language. The difference here is very subtle.

· Both languages treat "program "elements — such as a text field or a pop-up window — as objects, which can pass instructions to one another.

But a true object-oriented language, as Java is, also makes heavy use of inheritance: Objects can be extended by inheriting functionality from existing objects and adding new attributes. JavaScript does not have this ability; with JavaScript, objects can be created, but cannot inherit properties. Object-oriented languages can also make use of encapsulation, overloading and polymorphism.

The languages also differ in how each interacts with browsers and Web pages.

· You can use Java (which requires a compiler, a program that translates human-readable code into machine-readable executables) to create either standalone applications or applets that run within a browser.

· JavaScript, on the other hand, works only within a browser and is not compiled. You cannot use it to develop standalone applications. JavaScript is a scripting language for writing short programs, or scripts, such as log-on procedures. JavaScript originated as Netscape's LiveScript, but because of its similarity in syntax to Java, it was renamed JavaScript.

· Java applets are downloaded as separate files onto a client machine and are executed independently of HTML files and images; they are not visible in the source file.

· JavaScript is part of an HTML file and is visible in a document's source. You can use JavaScript to manipulate all of the HTML elements on a Web page.

· Java applet, however, is a self-contained application within a Web page, and is limited to the region it occupies within a window. Applets can react only to commands within the window's boundaries, but with JavaScript, events anywhere in an HTML page can be passed to Java applets.

The Java executable (it's not an executable per se, but it is compiled code and is referred to in the industry as an executable) is downloaded to the client computer and run by the Java virtual machine (JVM). Because the client's operating system and machine are unknown, Java cannot be sent to a client as machine language. The inventors of Java came up with a clever solution: Write a JVM for each platform. The executable content is downloaded as bytecodes, which the JVM then interprets into machine language.

Java, due to its complex syntax, rules, and restrictions, may seem daunting for those without programming experience. JavaScript, on the other hand, is easy to use and learn. You can create sophisticated applications just by just learning some commands, syntax rules, and the object model of the browser.

Comparisons and Contrasts between JavaScript and Java.

	JavaScript
	Java

	Interpreted (not compiled) by client.
	Compiled on server before execution on client.

	Object-based. Code uses built-in, extensible objects, but no classes or inheritance.
	Object-oriented. Applets consist of object classes with inheritance.

	Code integrated with, and embedded in, HTML.
	Applets distinct from HTML (accessed from HTML pages).

	Variable data types not declared (loose typing).
	Variable data types must be declared (strong typing).

	Secure. Cannot write to hard disk.
	Secure. Cannot write to hard disk.

Similarities

· Both can be used for enhancing the capabilities of Web pages.

· Both can run on the client's machine - i.e. the machine where you have your browser, not the server where the page came from. This is in contrast to "CGI programs" - programs which run on the server and use the CGI to communicate with the client. Java can also be used to write CGI programs, and as better Java server packages become available, this use is becoming more popular.

· Because they can run on the client, both can be used in place of some CGI programs to reduce the load on servers.

· Both can be misused to put annoying scrolling text, looping animations and the like on Web pages (Of course, this is my opinion only). In fact, the abuse of both Java and JavaScript for these purposes has given both languages a bad reputation, and many people think that these are the only uses of Java and JavaScript.

· Both have some level of security built in to guard against malicious use. No computer system is ever 100% secure unless it's isolated in a locked room surrounded by armed guards, but the developers of Java and JavaScript have taken some care in their security. But Java is a lot more secure than JavaScript - see the differences below.

Differences

· JavaScript has been developed specifically by Netscape and Sun for enhancing the capabilities of Web pages.

Java, on the other hand, is a general-purpose programming language. One of its uses is for Web pages, but it can be used for non-Internet applications as well.

· JavaScript is a "scripting language", which means the program reading it (Netscape) interprets exactly what you write.

Java is not interpreted directly. Instead, you must compile it first, and that's what the browser reads. Unlike traditional compilers, where the source code is converted into native machine code, the Java compiler generates an intermediate "bytecode" which is independent of any machine. An interpreter is built into the browser to run this code (This is known as the Java Virtual Machine).

· Things you write in JavaScript are called "JavaScript scripts"; things you write in Java (for Web pages) are called "Java applets". There's no such thing as a "JavaScript applet" or a "Java script".

· Your JavaScript source can be viewed by anybody (e.g. using Netscape's "View Source" command). Your Java source is hidden because it's only the compiled bytecode which the browser uses (This is not a guarantee of security, because there are Java disassemblers available, but at least it's harder to read than JavaScript).

· You can write fully-functional JavaScript using a simple text editor. To write fully-functional Java, you need the Java Developer's Kit (But it's free).

· Java is a strongly-typed, object-oriented, complex programming language. It's a very powerful language, and easily stands along-side other object-oriented languages like C++ . Some of the syntax is similar to C++, but Java is a lot easier to learn and use than C++.

JavaScript is a loosely-typed language which is much simpler than Java. In complexity, it's at a similar level to BASIC.

Both languages are programming languages, as opposed to HTML, which is simply a way of marking up text. JavaScript is easier to learn, but Java is more powerful for larger applications.

· JavaScript was developed with Netscape Navigator in mind, and has good support for an interface with the user's browser. For example, one of the frequently asked questions about HTML is "How can I control the 'Back' button"? You can't do it in HTML, but you can do it in JavaScript.

Java doesn't provide as much control over the browser, but it has other powerful features.

· Java has been designed with security being one of the highest priorities. The security mechanism in Java has been built into the Java Virtual Machine that runs Java programs and applets.

JavaScript, on the other hand, is much less secure. Although some attempts have been made to protect users from malicious JavaScript scripts, security holes are discovered much more frequently than in Java.

Beware that Microsoft's version of JavaScript, which they call "JScript", has subtle differences which make it incompatible with the original JavaScript.

So which one should I learn/use?
The answer, as in many things, is "It depends".

The interest in Java is growing rapidly, especially as people realize that it has far greater uses beyond simple Web applets. On the other hand, some people predict that there's too much hype about Java and its potential, and it will die down soon. Personally, I'm in the former camp - I think it has a lot of potential.

If you're interested in software development in general, Java is a better skill to have. If you're only interested in Web page design, JavaScript may be good enough (or better) for your purposes.

You should definitely consider the steep learning curve of Java when making a decision. Unless the people writing your Web pages have programming experience (preferably in an object-oriented programming language like C++), they will probably struggle with Java. JavaScript, on the other hand, is a much easier proposition, and it's easy to learn its key features in a day.

The hierarchy of JavaScript Objects

Objects, Properties, & Methods

When you load a document in a Browser, it creates a number of JavaScript Objects with Property values based on the HTML in the document and other pertinent information. These Objects exist in a Hierarchy that reflects the structure of the HTML page itself. The ability to change a Web page dynamically with a scripting language is made possible by the Document Object Model (DOM), which can connect any element on the screen to a JavaScript function. The DOM is the road map through which you can locate any element in your HTML document and use a script, such as JavaScript, to change the element’s properties.

The Document Object Model Hierarchy is illustrated in the following figure:

[image: image1.png]
So think of each Web page as a collection of several individual elements, which are called Objects. For example, every Image on the page is an Object, every Link on the page is an Object. Even this Document itself is an Object. At its most basic level, JavaScript allows you to control the appearance of many of the Objects that make up a Web page as we previously saw.

Objects are storage containers that have Properties (data values associated with Objects) and Methods (functions associated with Objects) that operate on that data. Objects may also have certain Events that are associated with them. Events are special signals or messages, which occur when certain pre-defined actions take place within a Web browser, or when the user interacts with a Web page. When an event message has been triggered, you need a way to intercept the message and react to it. This is achieved through the use of Event Handlers.

Listed below are the four things you need to know in order to understand how Objects are named. It's difficult to teach one without teaching the other three at the same time, so here they are all together. Although they may not seem perfectly clear to you when you read them through the first time, the example presented after them will show how the rules are used together, and that will clear things up a bit.

Object names include the names of Objects that contain them
The name of each Object is prefaced by the names of all the Objects that contain it, in order, separated by dots. For example, the window Object contains the document Object, and the document Object contains a form Object, and the form Object contains text input fields, buttons, select Objects, etc... — window.document.forms[0].elements[3]

Leave off the word "window."
All Object names officially start with the highest Object name, "window". But since all names start with "window", JavaScript allows you to leave that off. (document.forms[0].elements[3])

Multiple Objects are organized by Arrays
Any type of Object, such as a Form, an Image, or Links may have multiple instances on a page is referenced by an Array. Array names are formed by the plural of the Object name (i.e. "the forms Array" or "the images Array" or "links Array") and indexed by number using square brackets []. In an Array, counting — begins at zero — and the items in the array are sequenced in the same order they are in the HTML code that created them.

Form elements
The numerous Object types included in the Forms Array are collectively referred to as "elements" and they can all be referred to by means of the "Elements Array" (e.g.: elements[1]).

As an example, these rules tell us that if we wanted to refer to the 2nd text input on the 1st form of a Web page, we would write:

document.forms[0].elements[1]

The name of this particular Object demonstrates all four rules listed above:

1) It includes the names of all the Objects that contain it,

2) the word "window" has been left off,

3) the form and element Objects are shown as indexed arrays (which start at 0), and

4) the text input Object is referred to as a part of the elements array.

How to refer to an Object's Properties and Methods

As we saw above to refer to an Object's Properties and Methods, add a dot to the end of the Object's name and put the name of the Property or Method after it. So then, suppose we want to refer to the value Property of the form element described above, we'd write:

document.forms[0].elements[1].value
Once you know how to refer to a Property of an Object, you can gain information about that Property or you can change the Property. Likewise, if you can name an Object's Methods, then you can activate them by referring to them in your script.

For example, if you wanted to use the write() Method of the document Object, which lets you write content to a Web page (more on this in a later lesson), it would look like this:

document.write("This is what gets written into the document.")

In this hierarchy, an Object's "descendants" are properties of the object. For example, a form named form1 is an Object as well as a Property of the document Object, and is referred to as document.form1. For a list of all Objects and their Properties, Methods, and Event Handlers, see Appendix E, "JavaScript Object Summary."

Every page has the following objects:

· navigator: has properties for the name and version of the Navigator being used, for the MIME types supported by the client, and for the plug-ins installed on the client.

· window: the top-level object; has properties that apply to the entire window. There is also a window object for each "child window" in a frames document.

· document: contains properties based on the content of the document, such as title, background color, links, and forms.

· location: has properties based on the current URL.

· history: contains properties representing URLs the client has previously requested.

Depending on its content, the document may contain other objects. For instance, each form (defined by a <FORM> tag) in the document will have a corresponding Form object.

So any element on the screen, at least any that are enclosed within HTML tags, can be identified using a NAME to give it its own unique "address" as if it were on a city map. The DOM works like a map of your web page describing a path starting with the window itself and then the HTML document down to the various elements on the Web page. For example, the following refers to the value property of a text field named text1 in a form named myform in the current document – window.document.myform.text1.value

NOTE: If an object is on a form, you must include the form name when referring to that object, even if the object does not need to be on a form. For example, images do not need to be on a form. The following code refers to an image that is on a form:

document.imageForm.aircraft.src = 'F15.gif';

The following code refers to an image that is not on a form:

document.aircraft.src = 'F15.gif';

As we previously saw that by controlling Objects, we can:

· Open new browser windows, and determine their size and whether they should have scroll bars, or location windows.

· Change the content of multiple frames at once, even rewriting the HTML in a frame without downloading a new file.

· Add or remove text from forms including text areas and select boxes.

· Control the background color of your Web pages using JavaScript.

· etc...

It's possible to do all of the things described above because all of these things (Windows, Frames, Forms, Links, etc...) are Objects and JavaScript is a tool for controlling Objects.

Objects are one of the basic building blocks of JavaScript. JavaScript contains a number of pre-defined objects, such as window and document. In addition you can create your own objects.

When you load a page in a Browser, it creates a number of objects corresponding to the page, its contents, and other pertinent information.

The properties of the Document Object are largely content-dependent. That is, they are created based on the content that you put in the document. For example, the document Object has a Property for each Form and each Anchor in the Document.

For example, suppose you create a page named simple.htm that contains the following HTML:

<HTML>
<HEAD><TITLE>A Simple Document</TITLE></HEAD>

<BODY bgColor="White">

<FORM NAME="myform" METHOD="POST" ACTION="mail.cgi">
 Enter a value:
 <INPUT TYPE="text" NAME="text1" VALUE="blahblah">
 Check if you want:
 <INPUT TYPE="checkbox" NAME="Check1" VALUE="ON" CHECKED
 onClick="update(this.form)">Option #1
 <INPUT TYPE="button" NAME="Button1" VALUE="Press Me"
 onClick="update(this.form)">
</FORM>

</BODY>
</HTML>

Top of Form

Enter a value: [image: image2.wmf]

blahblah

Check if you want: [image: image3.wmf]Option #1 [image: image4.wmf]Press Me

As always, there would be window, location, history, and document objects. These would have properties such as:

· location.href is "http://sislands.com/samples/simple.htm"

· document.title is "A Simple Document"

· document.fgColor is "#000000"

· document.bgColor is "#FFFFFF"

· history.length is "3"

These are just some example values. In practice, these values would be based on the document's actual location, its title, foreground and background colors, and so on.

Notice that the value of document.title reflects the value specified in the <TITLE> tag. The values for document.fgColor (the color of text) and document.bgColor (the background color) were not set in the HTML, so they are based on the default values specified in the Preferences dialog box (when the user chooses General Preferences from the Options menu).

Because there is a Form in the document, there is also a form Object called myform (based on the Form's NAME attribute) that has 3 child objects: 1) text input field, 2) checkbox, and 2) button. Each of these objects has a name based on the NAME attribute of the HTML tag that defines it, as follows:

These are the full names of the objects, based on the DOM Hierarchy.

· document.myform => the form

· document.myform.Check1 => the checkbox

· document.myform.button1 => the button

NOTE: JavaScript is case sensitive document.myform.Check1 is not the same "Object" as document.myform.check1. In the example above document.bgColor is the correct way to deal with the document's background color but document.bgcolor is not!

Thus, the form Object myform has properties based on the attributes of the <FORM> tag, for example,

· document.myform.action is "http://sislands.com/cgi-bin/mail.cgi" , the URL to which the form is submitted.

· document.myform.method is "POST," based on the value of the METHOD attribute.

· document.myform.length is "3", because there are 3 <INPUT> elements in the form.

The form Object has child objects named button1 and text1, corresponding to the button and text field in the form. These objects have their own properties based on their HTML attribute values, for example,

· document.myform.button1.value is "Press Me"

· document.myform.elements[2].name is "Button1"

· document.myform.elements[0].name is "text1"

Three different ways to specify an Object's value:

· document.myform.text1.value is "blahblah"
NOTE: using just the Object names

· document.myform.elements[0].value is "blahblah"
NOTE: using an Object name & array notation (to specify the object instead of the Object's name)

· document.forms[0].elements[0].value is "blahblah"
NOTE: using just array notation

In practice, you refer to these properties using their full names, for example, document.myform.button1.value. This full name is based on the Navigator object hierarchy, starting with document, followed by the name of the form, myform, then the element name, button1, and, finally, the property name.

To finish off here are some additional information we can get from the document and form.

· document.myform.Check1.defaultChecked is "true"

· document.myform.Check1.value is "ON"

· document.myform.elements[1].name is "Check1"

2nd Example
This simple HTML document creates an anchor, a small form, and a link to that anchor. This is not intended to be the HTML for a meaningful Web page, but it will nevertheless illustrate the correspondence between HTML elements and JavaScript HTML objects.

<HTML>
<HEAD><TITLE>A very simple HTML page</TITLE></HEAD>
<BODY>
This is the top of the page
<HR>
<FORM METHOD="POST" ACTION="mailto:nobody@dev.null"><P>
 Enter your name: <INPUT TYPE="text" NAME="me" SIZE="70"></P>
 <INPUT TYPE="Submit" VALUE="OK"> <INPUT TYPE="Reset" VALUE="Oops">
</FORM>
<HR>
Click here to go to the top of the page
</BODY>
</HTML>

This code creates an HTML page with an anchor at the top of the page and a link to that anchor at the bottom. In between is a simple form that allows the user to enter his name. There is a submit button if he gets it right, and a reset button if he doesn't. If the user is successful the form's contents are submitted via a post action to the fictitious e-mail address nobody@dev.null.

The important aspect of this example is not its primitive HTML, but the fact that the HTML elements in it are reflected in the JavaScript Document Object Model (DOM) hierarchy. We have already seen that we can access the title of this document through the title property of the Document Object. We can also access the other HTML elements of this document using the following properties:

· anchors

· forms

· links

These properties of the Document Object are Arrays representing every HTML element that is an Anchor, Form, or Link on the page. In our particular example there is only one of each, so we would refer to the Anchor at the top of the page as document.anchors[0], the link at the bottom of the page as document.links[0], and the form in the middle of the page as document.forms[0]. These are the top-level HTML objects represented by this document. Each of these elements, in turn, has Properties and Methods that can be used to describe and manipulate it.

In particular, the Form Object corresponding to forms[0] has sub-objects for each of the 3 Form Elements (the reset button, the submit button, and the text input field), as well as properties for the submit method and the submit target. forms[0].elements[0] corresponds to the text input field. forms[0].elements[0].name is the name of that field, as specified by the NAME field, which is "me" in this case. The figure below recapitulates this HTML code and shows how each element in the page is associated with an HTML object.

document.title

<TITLE>A very simple HTML page</TITLE>

document.anchors[0]

This is the top of the page

document.anchors[0].name

document.forms[0] document.forms[0].method

<FORM METHOD="POST" ACTION="mailto:nobody@dev.null"><P>

document.forms[0].action

document.forms[0].elements[0] document.forms[0].elements[0].name

<INPUT TYPE="text" NAME="me" SIZE="70">

document.forms[0].elements[0].type
document.forms[0].elements[1] document.forms[0].elements[1].value

<INPUT TYPE="Submit" VALUE="OK">

document.forms[0].elements[1].type

document.forms[0].elements[2] document.forms[0].elements[2].value

<INPUT TYPE="Reset" VALUE="Oops">

document.forms[0].elements[2].type

document.links[0]

Click here to go to the top of the page

document.links[0].href
window Object

window Object

The Window Object is the top object in the JavaScript Object hierarchy. Every browser window that is currently open will have a corresponding window Object. All the other Objects are children of one of the window Objects. In particular, every window is associated with a particular Web page, and the HTML structure of this page is reflected in the Window's Document Object. Every Window corresponds to some URL; that URL is reflected in the location Object. Every window has a history of the previous pages that have been displayed in that window, which are represented by the various properties of the history object.

JavaScript maintains an idea of the current window, so that almost all references to sub-objects of the current window do not need to refer to it explicitly. This is why all of our output has been done using document.write() rather than window.document.write(). Window Objects have the following interesting Methods (among others):

· alert(msgStr) - The alert method is used to alert the user to something about which the user can do nothing. An alert dialog box contains a single OK button. The alert and confirm methods are used to display their msgStr argument in a dialog box.

· confirm(msgStr) - The confirm dialog box is more flexible, and displays its message with both an OK and a Cancel button. If the user selects OK then the confirm method returns true, otherwise it returns false.

· open(URL, windowName, features) & close() - You use the open Method of the Window Object when you wish to open a new browser window. The URL argument is a string representing the URL that will be loaded into that window. The windowName argument is a string that gives the new window its name. This method returns an instance of the window object representing the new window created. This method also accepts a third argument (features) that can be used to specify a wide variety of display options for the new window (such as whether or not it should display its toolbar). When the close() method is invoked from a window instance the underlying window is closed and the URL in it is unloaded.

· prompt(msgStr1, msgStr2) - The msgStr1 is text to be displayed, and the msgStr2 is an optional argument that can be used to set a default value in the text entry field. The prompt method is used to solicit user input, in the form of a string. This method returns whatever the user typed as a string.

· setTimeout("exp", millisecondsDelay) - setTimeout is not a delay loop but tells JavaScript to wait the specified amount of time before executing the method in the string "exp". the amount of time (in milliseconds) BEFORE an expression is evaluated.

All these methods are used to manipulate the Window state of the browser itself.

document Object

A document is the file of HTML codes that describe a given page. A page is what appears within the browser window. So, every window is associated with a document object.

A typical HTML document contains a variety of characteristics other than the content of the page itself. These include a background image (often called a background "texture"), background color, foreground color, and the colors of hypertext links. In traditional HTML, these traits are all defined as attributes of the <BODY> tag. The document Object also contains properties for every anchor, link, and form on that page, as well as all of the sub-elements of those elements. It also contains Properties for its title (the content of the <TITLE> field of the page), its foreground color (the fgColor Property), its background color (the bgColor Property), its various link colors, and other attributes of the page itself.

Like the Web browser's window, the document Object is also a built-in object of JavaScript. It has its own set of Properties and Methods with which you can influence various aspects of the current document. This page takes you through the Properties and Methods of the document Object and shows you how to use them in everyday life.

Properties

The document Object has a whole many Properties associated with it. Most of these properties mimic characteristics that may have been defined in HTML tags. But it's far from redundant mimicry; allowing you to access the properties via JavaScript opens up the possibility of changing a document's original characteristics, if you want.

The first property examples that follow illustrate this concept.

bgColor and fgColor
Two of the most basic characteristics of a document are its colors. A document has two main colors: a background color and a foreground color. The background color defines the color of the "page" itself, while the foreground color defines the color of the text that appears on the page.

More Colors alinkColor, vlinkColor, and linkColor
You can specify three other colors in a document. Each of these properties functions the same way as the previous two—they simply affect the color of different characteristics of the page.

· alinkColor - Defines the color of an "activated" link. An activated link is a link that has been clicked, but for which the mouse button has yet to be released.

· vlinkColor - Defines the color of a link that has already been visited.
· linkColor - Defines the color of a link that has not yet been visited and is not currently being clicked.

You can use each of the above in the standard ways for object properties: you can either retrieve the value from or assign a new value to document.alinkColor, document.vlinkColor, and document.linkColor. If you've coded HTML before, you might have noticed that you can set these same colors in standard HTML tags. So why bother with JavaScript? Because by using JavaScript, you can change the colors in a given page at any time you want — on the fly — perhaps as a result of certain user events. In HTML, you can define the colors only once for the life of the page.

title
The property document.title holds the value of the title of the document as defined in the HTML tags <TITLE> and </TITLE>. The title is what appears in the browser window's upper border and in the bookmark list if the page is bookmarked by a user. The title does not actually appear within the content of the page itself.

anchors
An anchor is a spot in a page that has been marked with a "name" within the HTML code. Links can then point to anchors to send a user to specific locations within a single page. Anchors are defined in HTML with the tag.

The document.anchors property is an array (that is, an object in and of itself) that contains the value of each anchor on the page, in the order in which they were defined in the HTML code. Suppose your page has five anchors defined within it. In that case, there are five properties in the object document.anchors:

document.anchors[0]
document.anchors[1]
etc...
document.anchors[5]

Each of the above contains the name of the anchor corresponding to the order in which it was defined. So if you named and defined your anchors in the order Monday, Tuesday, Wednesday, Thursday, Friday, those would be the values contained in document.anchors[0] to document.anchors[5], respectively.

You may use the property length, as in document.anchors.length to retrieve the total number of anchors defined.

Note that you would not use an assignment to document.anchors to bring the user to an anchor within the document. That could be done several ways in JavaScript. Remember that an anchor is specified in an URL with a hash mark following the pathname. Thus, you could assign the entire URL with a hash mark and desired anchor name to document.URL.

links
In the same spirit as the anchors property, you have the links property. Most pages contain several link definitions throughout the HTML code, as created by the tag.

document.links is another object array that contains each of the links specified in the current page. As with document.anchors, there are as many properties of document.links as there are links in the page, as indicated here:

document.links[0]
document.links[1]
etc...

You can retrieve the total number of links in the document using the property document.links.length. As usual, you can change the value of a particular link by assigning a new string to one of the above properties, as in document.links[2] = "http://www.yahoo.com".

Imagine a scenario where this reassignment may be useful. Say you have a link in the page that reads “Click here to continue.” Perhaps, though, you would like that link to take some users to one URL and take other users to a different URL, depending on some other condition, such as whether they've purchased more than a certain quantity of mugs.

Image Maps and Hyperlinks

More advanced readers may be wondering how image maps fold into the mix. An image map is an image with sub regions defined as hyperlinks. The answer is quite easy: each area within the image map is simply a hyperlink and thus part of the document.links[] array. So if the third hyperlink on a page is an area region of an image map, it can be referred to as document.links[2] (remember that the first hyperlink is element 0 of the array).

To do so, you can use an if...else statement to evaluate the user's mug purchase, and on each condition, you can assign a different URL specification to the above link. This would be transparent to the user. He would simply click the link labeled “Click here to continue,” and he'd be taken to an appropriate page as determined by your JavaScript program.

lastModified

This property simply contains a string value reflecting the date that the document was last modified. A function might use this property, for instance, to communicate to the user how "fresh" the current page is, in case some of its information may potentially become outdated.

referrer

This property contains the URL of the page that led to the current page. That is, if the user reached the current page via a link from another page, this property contains the URL of the page that linked him here. You might consider using this property to track statistics about which sites users are jumping to yours from.

URL

URL is a read-only string property that contains the complete URL of the current document. URL is usually equal to location.href for the window that contains document. These two are not always equal, however, because the document.URL property may be modified through URL redirection – location.href contains the requested URL while document.URL specifies the actual URL where it was found.

Forms
As with anchors and links, the document Object contains an array of properties for each form defined in the document. However, there's more to forms than simply a value (as was the case for anchors and links).

Images
New to JavaScript 1.1, the document Object now contains an array property that refers to each image in the current page. This array and its related Image object allow for a variety of new possibilities.

Applets
Also newly added to JavaScript 1.1 is the applets array and Applet object of the document Object. With the ability to reference Java applets in the current page, you can communicate between JavaScript and Java applets.

Methods

The methods of the document Object are, fortunately, relatively straightforward and useful.

write() and writeln() will be discussed in the next section.

close() &open()
The open() and close() methods are used to start and stop buffered output. If you call the open() method, perform a series of write()s and/or writeln()s, and then call the close() method, the results of your write operations are laid out and appear on the page.

NOTE: Do not confuse the open and close methods of the document object with the window methods of the same names. They perform very different functions, and are not interchangeable. Use an explicit reference - document.open() or window.open() - to obtain the appropriate one.

Events

It so happens that the document Object also has two relevant Event Triggers worth mentioning: onLoad and onUnload.

onLoad
You can use this event trigger to launch a particular JavaScript program or function upon the completion of initially loading the document. Perhaps you coded a JavaScript function that displays an alert message to the user before he even begins reading the page. The onLoad event would be useful for this purpose.

You include the event as an attribute of the document's <BODY> tag, as in:

<BODY onLoad="welcome()">

In this example, the onLoad event handler is set to call the function welcome(), which performs some feat of programming, such as displaying an alert window that requires the user to read an important disclaimer before he begins looking at the page. (Users will likely find this very annoying, but you could program it.)

The <BODY> tag occurs very early on in the HTML document. This highlights the need to define your functions as early in the document as possible — specifically, within the <HEAD> </HEAD> section, which is one of the only places prior to the <BODY> tag that you have an
opportunity to do so.

onUnLoad
This Event is triggered when the user "unloads" or exits the document. It would also be defined as an attribute of the <BODY> tag. You might, for example, use this to show a message to the user after he chooses to leave your page, such as by calling a function that writes the text "You come back now, you hear?" into the document window.

<BODY onLoad="welcome()" onUnLoad="bye()">

As it stands, the only major aspect of JavaScript remaining to be covered is the forms objects.

Summary:
· The document is the HTML file that loads as a Web page in the browser window.

· JavaScript contains a document Object, which possesses a number of properties through which you can read or modify characteristics of the current document.

· You can use document.bgColor and document.fgColor to alter the colors of the background or foreground text, respectively. Colors are defined in hexadecimal RGB values.

· document.anchors and document.links are arrays that contain the values of a document's defined anchors or links, respectively. For example, document.link[2] refers to the third link defined in the document (remember, the first link is link[0]).

· You can use the method document.write("string") to output HTML tagged text to the current window.

· Use the event triggers onLoad and onUnLoad to watch for users opening or exiting your page. Both are defined as attributes in the <BODY> tag.

Outputting Text with JavaScript

In most programming languages, one of the basic capabilities is to output – or display – text. In JavaScript output can be directed to several places including the current document windows and pop-up dialog boxes.

document.write() and document.writeln() Methods
The document object in JavaScript includes two methods designed for outputting text to the client window's document: write() and writeln(). In JavaScript, methods are called by combining the object name with the method name:

document.write("Test");
document.writeln('Test');

A quick look at these examples shows you that strings of text are surrounded by double (or single) quotes and that the two methods (document.write() and document.writeln()) are invoked in the same manner. Opening and closing quotes must be the same type, they must match up – you cannot open with double quotes and close with single quotes or vice versa.

For example, suppose you want the string "Thank you for ordering" written in the window in large type. The HTML <H1> and </H1> tags are one way to generate text in a large font size. Therefore, you could simply use this method call:

document.write("<H1>Thank you for ordering!</H1>");

Alternatively, you might have constructed a string ("An Example") somewhere else in your JavaScript code and assigned that to a variable, such as example. In this case, you can simply pass the variable example as the parameter to the method call, like this:

document.write(example); // would output An Example to the document

NOTE that the write method actually takes a variable number of arguments, rather than just one. If more than one argument is given, each of the arguments is interpreted as a string and written in turn.

document.write("This is Part 1 ", "and this is Part 2 ", "and this is Part 3");

is the same as

document.write("This is Part 1 and this is Part 2 and this is Part 3");

The difference between write() and writeln() is that the writeln() appends a newline character to the end of the output. A newline character is basically like a carriage return. However, keep in mind that these methods output their parameters as HTML. And remember that HTML ignores newline characters when it comes to outputting to the screen.

What does the above mean? It means that HTML does not insert line breaks in screen output unless you specify a line break using either
 or <P> tags. Any "natural" line breaks in your HTML code, such as those created when you hit return, are ignored. The only time this is not true (when carriage returns are honored) is for text that resides between <PRE> and </PRE> tags. Those tags define a section of text that is "preformatted," and it appears on-screen in the browser's defined monospace font — a font in which all characters are of equal width (it’s often Courier).

NOTE: Thus, in most cases, there will be no effective difference between the write() and writeln() methods unless your string parameter contains HTML code that places the output within <PRE> and </PRE> tags.

document.write()s in action

<BODY>

This text is plain.

<SCRIPT>

document.write("This text is bold.");

</SCRIPT>

Output of the Code is on the Website

NOTICE that the HTML tags, as well as regular text, can be outputted by the write() method. Notice the and tags can either be output as part of the write() method or left outside the script. In either case, the text and HTML is evaluated in the order it appears in the complete HTML and JavaScript source code.
The steps involved with the browser and document.write():

1. document.write() "converts" everything to HTML

2. the browser then interprets the HTML and then renders the HTML

Note: variables can also be outputted through the write() methods

The writeln() method is the same as the write() method except that it adds a carriage return at the end of the string that is being outputted. This is really only relevant inside of <PRE> containers where carriage returns are interpreted in displaying the text.

write() & writeln() inside & outside the PRE tags see the Website for the Output

In this example, you can see how both text and HTML tags can be output to the current HTML windows using the write() method. Notice the use of both single and double quotes to delimit the start and end of the text strings. In the first call to the write() method, you use the single quotes so that the text string can contain the double quotes required by the IMG tag.

Escape characters
Characters like the double quote mark ("), the single quote mark ('), the hard return, tabs, the semi-colon (;), and the ampersand (&) have special meanings within JavaScript. But sometimes you want to use them for their traditional values - to have quotation marks appear around a phrase on the screen, to add a hard return to your text file to make it more readable.

In JavaScript, strings of text, such as those used to produce output with the write() and writeln() methods, can include special keystrokes to represent characters that can’t be typed, such as new lines, tabs, and carriage returns. You can escape the character -- that is, you can tell JavaScript to skip over it — by preceding it with a backslash

The backslash (\) character is JavaScript's escape character. Here are a couple examples of it in use.

You can precede hard returns with the backslash to break up a long text line to make your file easier to read and edit. JavaScript will skip the return because there is a backslash immediately in front of it:

document.write ("This is a very long sentence \
which I am writing \
in the browser window and \
it is really a paragraph in length \
and I know that it would \
go on for a very long time \
without breaks.")

Output of the above example is on the Website - Make sure you check the source code

You can precede double quotes that you want to appear in the text string with the backslash. JavaScript will not try to process the double quotes because there is a backslash immediately in front of it:

document.write("This is where we say \"welcome\" to all our friends.
");
document.write('This is where we say "welcome" to all our friends.
');
document.writeln("<PRE>document.writeln() works within the the <PRE> tags.</PRE>");
document.write("<PRE>document.write() with \\n works within the <PRE> tags.\n</PRE>");
document.write("document.write() with \\n does not works outside the <PRE> tags.\n");
document.write("A backslash: \\");

Output of the above example is on the Website

Escape characters

Character
Description
\n

new line
\t

tab
\r

carriage return
\f

form feed
\b

backspace
NOTE: the escape characters only work in the following situations:

· within <PRE> tags

· alert(), confirm(), & prompt()

· within <TEXTAREA> tags

Double and Single Quotes
Use double quotes (") for HTML attributes and single quotes (') for JavaScript string literals.

When writing HTML it is general practice to use double quotes for tag attributes, e.g.:

When writing JavaScript it is general practice to use single quotes for string literals:

<SCRIPT>

document.write('<P>');

</SCRIPT>

In general these quoting styles then complement one another when outputting HTML using JavaScript:

<SCRIPT>

document.write('');

</SCRIPT>
Where nested quotes are required then use the escape key ("\") to escape the quotes:

<SCRIPT>

document.write('Don\'t forget to escape apostrophes');

</SCRIPT>

Concatenation – you can combine the various pieces of your welcome message into a single document.write() command using a simple plus (+):

document.write('');
document.write("<H3>Greetings, " +

 prompt("Enter Your Name:", "Frank") +

 ". Welcome to the " + navigator.appName + "!</H3>");

prompt() message & concatenation example on the Website

Using Arrays to Refer to Forms

Type something into the text boxes. Then use the first button to see the form element names, and the second button to see the form element values.

<SCRIPT>

function DisplayElementNames() {
 for (i = 0; i < 4; i++) {
 alert('document.Customer.elements[' + i + '].name is\n\n"' +
 document.Customer.elements[i].name + '"')
 }
}

function DisplayElementContents() {
 for (i = 0; i < 4; i++) {
 alert('document.Customer.elements[' + i + '].value is\n\n"' +
 document.Customer.elements[i].value + '"')
 }
}

</SCRIPT >

<FORM NAME="Customer">
 First Name: <INPUT TYPE="text" NAME="Firstname">
 Last Name: <INPUT TYPE="text" NAME="Lastname">
 <INPUT TYPE="button" NAME="Btn1" VALUE="Display the elements names"
 onClick="DisplayElementNames()">
 <INPUT TYPE="button" NAME="Btn2" VALUE="Display the elements values"
 onClick="DisplayElementContents()">
</FORM >

Setting the bgColor & fgColor Properties

JavaScript is driven by Events, which are things that happen on a page, usually as a result of user actions. JavaScript uses Event Handlers to respond to Events. Event Handlers are written into various types of HTML tags and don't require a <SCRIPT> tag.

This page sets the 'bgColor' Property of the Document Object to "indigo" and then allows the user to change the background & foreground colors by clicking the buttons.

<FORM>

 <H3>BackGround Colors</H3>
 <INPUT TYPE="button" VALUE=" Red " onClick="document.bgColor = 'red'">
 <INPUT TYPE="button" VALUE=" White "
 onClick="document.bgColor = 'white'">

 <H3>ForeGround Colors</H3>
 <INPUT TYPE="button" VALUE=" Blue " onClick="document.fgColor = 'blue'">
 <INPUT TYPE="button" VALUE=" Green "
 onClick="document.fgColor = 'green'">

</FORM>

For example, the following combination of HTML and JavaScript will change Document's background color (bgColor). Here's what the code looks like:

<INPUT TYPE="button" VALUE="Click Here."
 onClick="document.bgColor = 'red'">

The term "onClick" is the Event Handler, and as you can see, it is included as an attribute inside the HTML <INPUT> tag. When a user clicks on the button, the JavaScript code after it is activated, which in this case is to change the background color (bgColor) of the Document to red.

NOTE: Even though Netscape wrote the JavaScript specifications Netscape itself does not adhere to their own specification. document.fgColor for example does not work in Netscape. Throughout this course you will find out that Netscape Browsers have problem after problem. The reason that Netscape lost market share is very simple, their Browsers are inferior!

location and history Objects

The location Object refers to the current URL — that is, the address of the page currently loaded. This Object provides several Properties with which you can play with various characteristics of the URL. The history Object contains the current list of other URLs that have been visited in the present session. It, too, can be sliced, diced, and analyzed.

location Object

The location Object contains the current URL. Therefore, imagine that the address of your Web page is this:

http://www.someISP.com/~me/myPage.htm

In this case, the location Object refers to that address. With the Object's Properties we will be able to pull out various portions of the URL.

 href
location.href contains the string value of the entire URL. Thus, given the previous sample URL, location.href is "http://www.someISP.com/~me/myPage.htm".

One possible use of this property is to pass it as a parameter to the window.open() call. Perhaps you want to open a new window, which connects to the same URL as the current window (so you can look at another portion of the same page at the same time you're looking at the current portion of the page). Simply use this call:

window.open(location.href, "windowName", "feature1,feature2, ...");

You can also launch a new page without opening a new window. If you simply assign a new URL to location.href, the browser will attempt to connect to a new page. For example:

location.href = "http://www.someISP.com/~me/myPage.htm";

Of course, if you do this, you'll effectively be leaving your current page, including any other JavaScript programs that are in it.

host
The location.host property holds only the hostname and port of the current page's URL. Take a look at the previous example URL

http://www.someISP.com/~me/myPage.htm

where the "hostname" would be www.someISP.com. That's the Internet name of the computer on which the page resides. In the previous example, no port is specified in the URL and, therefore, location.host will only contain the value " www.someISP.com ". If a port were specified in the URL, it might look like this:

http://www.someISP.com:80/~me/myPage.htm

"80" is the port in this example. If this were your URL, location.host would contain the string value " www.someISP.com:80". (Because the default port for a Web page is 80, it is usually not specified; but some URLs use a different port, in which case, it will be specified.) One possible use for this property is to construct a string for a user message or HTML link. That is, suppose you want to write a JavaScript function that you might use in numerous Web pages. The purpose of the function is to provide an HTML link that the user can click to jump to another document in a set of pages. Because your function doesn't know which machine it will be on, it could use the location.host property to concatenate an appropriate string for later output in the window as a link.
port
The property location.port simply contains the value of the port number in the URL, if specified, as explained previously. Note that if a port was not specified in the URL, location.port contains no value. It does not contain the default 80 port unless the 80 was specified in the URL.

Home Port

A computer is more like an apartment block than a single family home: It has a street address (its IP address, such as www.someISP.com), but it also has a series of “apartments” within that address. In net-speak, these apartments are called ports. A computer “listens” on different ports for different types of connections. Generally speaking, Web servers listen for requests on port 80. However, some servers are configured differently and listen on another port. In such cases, when addressing this machine with a URL, you must specify the alternate port to send the request to. Therefore, if www.someISP.com listens for Web requests on port 8080, you could send open an URL such as:

http://www.someISP.com:8080/~me/myPage.htm.

Assigning a value to location.host will generate an error because it is nonsensical. Whereas you can assign an entire URL to location.href, which would then connect to that URL. You cannot connect to just a host. Thus, assigning a value to location.host is of no use.

hostname
At the risk of sounding redundant, let me say that the property location.hostname will return just the hostname portion of the URL. Recall in the case above that host refers to hostname:port. Likewise, hostname refers only to the name. Yes, it is true: If there is a URL with no port specified, location.host and location.hostname contain the same value.

pathname
Once again, let's look at your example URL:

http://www.someISP.com/~me/myPage.htm

The pathname is the portion of the URL that describes the location of the Web document on the host computer. The pathname begins with and includes the slash (/) immediately succeeding the hostname (or the port, if it were specified). In the above,

/~me/mypage.htm

is the pathname. Therefore, this is the value that location.pathname would contain.

Assigning a value to this property, as in

location.pathname = "~me/otherdocs/newdoc.htm";

will cause the Web browser to load that document into the current window. This is similar to when you assigned a value to location.href, except that the new document will come from the same host as the current document.

protocol
The protocol property contains the leftmost portion of the URL, which contains the name of the protocol to use in retrieving the specified file (Web document). The example URL used the HTTP protocol, as is most common on the Web. However, some URLs may contain different protocols, such as

file://hostname/pathname
ftp://hostname/pathname
news://hostname/pathname

FTP, for instance, is the File Transfer Protocol and is another common way in which files can be delivered across the Internet.

In your http://www.someISP.com/~me/myPage.htm example, location.protocol would contain the value "http:". In the previous examples, location.protocol would contain "file:" and "ftp:", respectively.

By checking the location.protocol property, the JavaScript program can determine if the page it currently resides in was delivered by HTTP, FTP, or NEWS. Conceivably (although not commonly), this could later be used in the JavaScript program to direct the user elsewhere, or to inform the user of restrictions (e.g. “Sorry, but to hear the streaming audio on this page you must retrieve the page using HTTP”).

hash
Some URLs contain special hash mark values following the pathname. For example:

http://www.someISP.com/~me/myPage.htm#item1

The hash mark (#) specifies the name of an anchor to jump to in the Web page. An anchor is a place on a page that has been marked (via the HTML tags that make up the page) as a jump-to point. This allows users to be directed to specific spots within a page, instead of always at the very top. The above URL attempts to bring the user to the anchor known as "item1" in the page myPage.htm.

Thus, the location.hash property would contain the value following the hash mark (in the preceding case, it would be item1).

Assigning a value to location.hash will cause the Web page to jump to that anchor. NOTE: that of the properties you've seen so far, this may be one of the most useful.

Because it jumps to new locations within the same page, location.hash is more desirable than throwing out your current page, such as when you assign new values to location.href or location.pathname. You can use the location.hash property in Event Handlers, for example, to bring the user to specific locations within the current page.

search
Yet another variation on the URL is a search parameter following the pathname, denoted with a question mark (?). A form entry is probably the most common use for a search parameter. When a user enters form data into a form element and then clicks the "submit" button, the following URL is called:

http://www.someISP.com/~me/myProgram?formData

The property location.search would contain the value following the question mark. The most sensible use of this parameter would be in the page that receives the submitted form data.

For example, suppose you have two pages. One of them accepts user input in a form entry. It then sends that input to another page. This other page contains a JavaScript function that evaluates the submitted form data. Therefore, you can make a call to this function with evalform(location.search), which would pass the submitted form as a parameter.

You define a form element with the <FORM> tag. This tag may take several attributes, one of which is the METHOD attribute. METHOD may be assigned either GET or POST. This defines how the form data will be submitted to the server. The details are technical, but GET is the most popular method. It is also the method that generates the ?formData syntax in a URL.

The ACTION attribute specifies which URL to send the submitted data to. This URL will presumably be designed to process the form data in some way.

Thus, a <FORM> definition might look like this:

<FORM METHOD="GET"
 ACTION="http://www.someISP.com/~someOne/someProgram?doSomething">

The preceding set of properties for the location Object gives you all you need to pull out of the current URL any relevant information you need. reload()
The reload() method of the location Object reloads the document that is currently displayed in the window of the location Object.

history Object

When you access the history list, you're presented with a list of the pages you accessed in this browsing session. You may then choose to quickly jump to one of those previously visited URLs.

The history Object lets you send the user to somewhere in the history list from within a JavaScript program. The object contains one property and three methods.

history Property
length

Depending on how many pages the user has visited during this session, the history list can be of any length. The property history.length contains the current length of the history list.

It's worth noting that the history Object does not contain any values that reflect the actual URLs in the history list. Therefore, you cannot, for example, perform some action that reads the value of "URL number 3 in the history list." The history Object is designed for navigating the history list. That's where its methods come into the picture.

history Methods
back()

This method has a very logical behavior: history.back() simply moves the user to the URL one place previous in the history list (previous to the current position). It is the same as if the user clicked the "back" or left-pointing arrow in the Web browser's navigation toolbar.

Just as with any instance where you bring the user to a new page, you give up control from your JavaScript program. The user may never return — or he may go anywhere else that the new page links to. Therefore, it usually makes the most sense to utilize these JavaScript methods (which call up new pages) between sets of pages you have designed. In this way, your pages can all contain appropriate JavaScript programs within each to move the user along to where you want them to go.

forward()

Can you guess what this method does? I bet you can. history.forward() moves the user one URL forward, relative to current position, in the history list.

go(offset) or go(substring)

Lastly, you can use the go() method to jump to a particular position in the history list, instead of merely making one hop backward or forward. You can use this method to refer to the desired position in the history list in two different ways.

go(offset) accepts an integer parameter, positive or negative, as offset. If the parameter is a positive integer, the program will move the user that many places forward in the history list. If the parameter is negative, it'll move the user that many places backward (previous to the current position) in the history list. Your current position is always place zero. For example, this line:

history.go(2);

will send the user two locations forward in the history. Likewise, this line:

history.go(-3);

will send the user three locations backward in the history.

Alternatively, you can send go() a string instead of an integer value. For example:

history.go("email.htm");

In this case, JavaScript will search for the newest history list URL that contains the specified string somewhere within its URL string. Therefore, if the history list contains the URL http://www.someISP.com/~someOne/email.htm, that's where the user will be sent by the above example (unless, of course, there is another URL that also contains "email.htm" and has been added to the list more recently).

Remember that URLs are added to the history list when the user visits a page. Therefore, the URLs closest to the end of the history list are the newest; those closest to the beginning are the oldest.

Summary:
· The location Object possesses several properties that relate to portions of the current URL.

· location.href contains the value of the entire URL.

· Properties host, hostname, port, pathname, and protocol each contain the value of their respective portions of the URL.

· location.hash and location.search contain the values of the strings following an anchor specification and form data, respectively.

· The history Object allows for navigation through the current session's URL history list -- history.back() and history.forward() move the user back or forward one URL in the history list.

· history.go(integer) moves to the URL that is integer places away from the current URL; negative integers move backward (earlier) in the list from the current URL, and positive integers move forward (later in the list).

· history.go("substring") moves to the newest URL in the history list that contains "substring" somewhere within it.

history and location Objects Examples

This simple form allows us to navigate to different documents by using the back() and forward() history Methods instead of using the browser's buttons.

<FORM NAME="buttonbar">
 <INPUT TYPE="button" VALUE="Back" onClick="history.back()">
 <INPUT TYPE="button" VALUE="JS - Home"
 onClick="location.href='../default.htm'">
 <INPUT TYPE="button" VALUE="Next" onClick="history.forward()">
</FORM>

You could also write history.go(-x) and history.go(x)

"history.go(##)" denotes movement through your history file. That's the file that keeps a record of everywhere you've been during that particular web browsing session. (1) sends it forward one step, (-1) sends you backwards one step. If you'd like, you can raise or lower those numbers. Setting it to (-4) will take your user back four pages if he or she has that many page in their history file. If not, then the button will not function.

location.href='../default.htm' - takes us directly to the default.htm page.

Number of Web pages visited during this Session

<SCRIPT LANGUAGE="JavaScript">

function showCount() {
 var histCount = history.length
 if (histCount > 5) {
 alert("You've been busy. You have visited " + histCount + " Web pages so far.")
 }
 else alert("You have been to " + histCount + " Web pages this session.")
}

</SCRIPT>

<FORM>
 <INPUT TYPE="button" NAME="activity" VALUE="My Activity"
 onClick="showCount()">
</FORM>

NOTE: The history Object is an Array of URLs. Like all Arrays, it has a length Property that specifies the number of elements in the Array. So history.length is the number of elements in the history Array.

navigator Properties
This example displays the properties of the Navigator object. This particular example also illustrates some of the differences between the Netscape Browsers and the Microsoft Browsers. The Microsoft Browsers, for example, don't understand the mimeTypes[] and plugins[] Arrays. So, if you run this example in Netscape everything works fine, however, if you run this example in the Explorer you will get an error message. See this example on the Website.

navigator.appCodeName = Mozilla

navigator.appName = Microsoft Internet Explorer

navigator.appVersion = 4.0 (compatible; MSIE 5.5; Windows NT 4.0)

navigator.userAgent = Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0)

<SCRIPT>

function DisplayProperties() {
 document.write("<P>navigator.appCodeName = " +
 navigator.appCodeName);
 document.write("<P>navigator.appName = " + navigator.appName);
 document.write("<P>navigator.appVersion = " + navigator.appVersion);
 document.write("<P>navigator.userAgent = " + navigator.userAgent);
 document.write("<P>navigator.mimeTypes[0].type = " +
 navigator.mimeTypes[0].type);
 document.write("<P>navigator.plugins[0].name = " +
 navigator.plugins[0].name);
 document.write("<P>navigator.language = " + navigator.language);
 document.write("<P>navigator.platform = " + navigator.platform);
}

</SCRIPT>

Later in the script the function is called from this script:

 <SCRIPT>

DisplayProperties();

</SCRIPT>

DataTypes
· Numbers - are values that can be processed and calculated. You don't enclose them in quotation marks. The numbers can be either positive or negative.

· Strings - are a series of letters and numbers enclosed in quotation marks. JavaScript uses the string literally; it doesn't process it. You'll use strings for text you want displayed or values you want passed along.

· Boolean (true/false) - lets you evaluate whether a condition meets or does not meet specified criteria.

· Null - is an empty value. null is not the same as 0 – 0 is a real, calculable number, whereas null is the absence of any value.

Data Types
	TYPE
	EXAMPLE

	Numbers
	Any number, such as 17, 21, or 54e7

	Strings
	"Greetings!" or "Fun"

	Boolean
	Either true or false

	Null
	A special keyword for exactly that – the null value (that is, nothing)

Integers
In JavaScript, you can express integers in 3 different Bases:

· base 10,

· base 8 (octal), and

· base 16 (hexadecimal).

Base 8 numbers can have digits only up to 7, so a decimal value of 18 would be an octal value of 22.

Similarly, hexadecimal allows digits up to F, where A is equivalent to decimal 10 and F is 15. So, a decimal value of 18 would be 12 in hexadecimal notation.
In order to distinguish between these three bases, JavaScript uses the following notation.

Specifying bases in JavaScript
	NUMBER SYSTEM
	NOTATION

	Decimal (base 10)
	A normal integer without a leading 0 (zero) (ie, 752)

	Octal (base 8)
	An integer with a leading 0 (zero) (ie, 056)

	Hexadecimal (base 16)
	An integer with a leading 0x or 0X (ie, 0x5F or 0XC72)

Floating Point Values
Floating point values can include a fractional component. A floating-point literal includes a decimal integer plus either a decimal point and a fraction expressed as another decimal number or an expression indicator and a type suffix

· 7.2945

· -34.2

· 2e3 means 2 x 103

· 2E-3 means 2 x 10-3

Floating point literals must, at a minimum, include a decimal integer and either the decimal point or the exponent indicator ("e" or "E"). As with integers, floating point values can be positive or negative.

Strings
Technically, a string literal contains zero or more characters enclosed, as you know, in single or double quotes:

· "Hello!"

· ‘245’

· "" // This example is called the empty string.
NOTE: the empty string is distinct from the null value in JavaScript.

NOTE: Strings are different from other data types in JavaScript. Strings are actually Objects. This will be covered later on.

Boolean
A Boolean value is either true or false.

Note: Unlike Java, C and other languages, in JavaScript Boolean values can only be represented with true and false. Values of 1 and 0 are not considered Boolean values in JavaScript.

Null Value
The Null Value is a special value in JavaScript. The Null Value represents just that – Nothing. If you try to reference a variable that isn’t defined and therefore has no value, the value returned is the Null Value. Likewise, in prompt dialog box, if the user selects the Cancel button, a null is returned. (see the example on the Website)

NOTE: This is distinct from a value of zero or an empty string where this is an "actual" value. The Null Value is indicated in JavaScript by the term null.

NaN (Not a Number)

In addition to these values, some functions return a special value called NaN – which means that the value is not a number, parseInt() and parseFloat() are an examples of functions that return NaN when the argument passed to them cannot be evaluated to a number.

NOTE: Values can be tested to see if they are NaN by using the isNaN() function which returns true or false based on the nature of the argument passed to the function.

parseInt() & parseFloat()

var br;
var bName = navigator.appName;
var bVer = parseInt(navigator.appVersion);

NOTE:
navigator.appName == Microsoft Internet Explorer
navigator.appVersion == 4.0 (compatible; MSIE 5.5; Windows NT 4.0)

var bVer = parseInt(navigator.appVersion) returns the value 4

if ((bName == "Netscape" && bVer >= 3) ||
 (bName == "Microsoft Internet Explorer" && bVer >= 4)) br = "n3";
else br = "n2";

// "n3" is short for Netscape 3.x or greater or JavaScript 1.1 or greater

if (br == "n3") {
 etc...
}

bName (browser Name) & bVer (browser Version) give us enough information to decide what the browsers are capable of based on the information we just gathered.

· parseInt("12.34"); // returns 12

· parseInt("3 blind mice"); // returns 3

· parseFloat("3.14 meters"); // returns 3.14

· parseInt("eleven"); // returns NaN

· parseFloat("$72.74"); // returns NaN

Summary: parseInt() pulls out the Integer from a string while parseFloat() pulls out the Float from a string.

NOTE: The string must start with a number otherwise NaN (Not a Number) is returned.

Variables
A variable is a placeholder for storing and manipulating a value. You'll use variables in many different ways throughout your scripts.

If you've taken algebra, you've seen variables. If you haven't taken algebra, don't worry about it. Variables are simply the way JavaScript stores information. For example, if you write "x = 2," "x" is a variable that holds the value "2". If you then say "y = x + 3," "y" will hold the value "5".
Types

· string

· numeric

· Boolean (Member = true)

· null – special keyword, that is treated as an "empty" variable

NOTE: This is distinct from a value of zero or an empty string where this is an actual value. The Null value is indicated in JavaScript by the term null.

Naming:

· The first character in the name must be a letter (a-z or A-Z) or an underscore (_).

· The rest of the name can be made up of letters (a-z or A-Z), numbers (0-9), or underscores (_).

· Don’t use spaces inside names. FirstName OK, but First Name is NOT OK!

· Avoid "reserved words", words that are used for other purposes in JavaScript. For example, you couldn’t call a variable alert or goto.

· Case-sensitive - FirstName and firstName are not the same

· Variables should describe what they are.

Valid Examples

· year2000

· First_Name

· _people

Invalid Examples

· $1000 // 1st character is not a letter (a-z or A-Z) or an underscore (_)

· 1000
 // 1st character is not a letter (a-z or A-Z) or an underscore (_)

· &Me // 1st character is not a letter (a-z or A-Z) or an underscore (_)

· Date&Time // after the 1st character a name can be made up of letters

 // (a-z or A-Z), numbers (0-9), or an underscores (_) ONLY!

Declaring & "not" Declaring

In order to use variable, it is good programming style to declare it. Declaring a variable tells JavaScript that a variable of a given name exists so that the JavaScript interpreter can understand references to that variable name throughout the rest of the script.

Although it is possible to declare variables by simply using them, declaring variables helps to ensure that programs are well organized and helps to keep track of the scope of variables.

You can declare a variable using the var command:

var example; NOTE: get into a habit of using semicolons

Ending Statements with a Semicolon?
NOTE: JavaScript doesn't require us to declare variables or end statements with semicolons. However, in the traditional programming languages C, C++, Java, and Perl each code statement must end with a semicolon. By getting into the habit of using semicolons you will have no problems when you get into other languages that require semicolons. The same principle applies to declaring variables.

In this line, you have defined a variable named example, which currently has no value. It is also possible to assign value to a variable when you declare it:

var example = "An Example"; NOTE: quotation marks for string

Here you have declared the variable named example and assigned a string value of "An Example" to it. Because JavaScript allows variables to also be declared on first use, the command example = "An Example" would also achieve the same result.

Note: the equal sign (=) used in assigning a value to a variable is known as an assignment operator. Assignment operators are discussed later in this session.

var example = "An Example";
document.write(example); // see the output on the Website
· var month = "June"; NOTE: quotation marks for string

· month = "June";

· var num;

· var num = 9;

· var nextWeek;

var NextWeek; NOTE: case-sensitive

If a JavaScript browser looks at a variable in a script and sees that the data after the = sign is not enclosed in quotation marks, and if it is not the word true or false, it creates a numeric value (also looks for 0 or 0x, otherwise assumes that’s a decimal).

Note: If you try to assign non-numeric data to a variable without putting that text in quotation marks, Navigator won’t like it. You’ll probably get a "xxx is not defined" error message (where xxx is the data you were trying to place into the variable).

Casting - Working with numbers and text combined
JavaScript is what is called a loosely typed programming language. In loosely typed languages, the type of a literal or variable is not defined when a variable is created and can, at times, change based on the context. By comparison, Java and C are not loosely typed.

You may have noticed that the + sign is used differently depending on the context it's in. If you place it between two numbers, the + sign will add the numbers:

2 + 2 = 4
10 + 5 = 15

If you put the plus sign between two words, the words will be joined together.

"two" + "two" becomes "twotwo"
"First word," + " second word." becomes "First word, second word."

And finally, if you put a word and a number together with the + sign, they will be joined as though they were both words.

"two" + 2 becomes "two2"
2 + "Ten" becomes "2Ten"

var num1 = 19;
var num2 = 96;
var total = num1 + num2 (total = = 115)

var text1 = "19";
var num1 = 96;
var total = text1 + num1 (total = = "1996")

Ordinarily, you wouldn't want to do this, so when this happens, it's often the result of a mistake, where a number has previously been converted to a text string. This can happen when a number is retrieved from a cookie or if a number is entered into a form along with text characters.

Fortunately, if you run into a situation where JavaScript is treating numbers like text, there's a Method that can convert text string numbers back into a real numbers.

The parseInt() Method takes as an argument any text string that starts with a numeric character and it returns the number at the beginning as a number. It also removes any text that may have followed the number in the text string. Once the text number is converted back to a number you can safely use the + sign to add it to another number.

"2two" + 2 becomes "2two2"
parseInt("2two") + 2 is equal to 4

Two examples to test your "knowledge" (example1 & example2) see the examples on the Website.

Example 1

<SCRIPT LANGUAGE="JAVASCRIPT">

var sMonth = "September";
var nYear = 2000;
var nDay = 27;

var sDate = sMonth + " " + nDay + ", " + nYear;

</SCRIPT>

Then we created this button:

<FORM>
 <INPUT TYPE="button" VALUE="sDate" onClick="alert(sDate)">
</FORM>

Example 2

Top of Form

Bottom of Form

<SCRIPT LANGUAGE="JavaScript">

var sVariable1 = "555";
var sVariable2 = sVariable1 + 10;
var sVariable3 = sVariable1 - 10;

</SCRIPT>

<FORM>
 <INPUT TYPE="button" VALUE="sVariable2: String + Numeric"
 onClick="alert(sVariable2)">
 <INPUT TYPE="button" VALUE="sVariable3: String - Numeric"
 onClick="alert(sVariable3)">
</FORM>

NOTE: The same will hold true for multiplication and division. Try it for yourself!

Expressions & Operators
Working with Variables
In order to make variables useful, you need to be able to manipulate variables and evaluate them in different contexts.

At its most basic, an expression is nothing more than a collection of variables, operators, and other expressions – all of which evaluate to a single value.

As with data types, JavaScript has several kinds of expressions:

· Assignments: Assigns a value to a variable

· Arithmetic: Evaluates to a number

· String: Evaluates to a string

· Logical: Evaluates to a Boolean value
Assignments
(x = 10 and y =5)
	ASSIGNMENTS
	WHAT IT DOES

	x = y
	Sets x to the value of y

	x += y
	x = x + y (15)

	x -= y
	x = x – y (5)

	x *= y
	x = x * y (50)

	x /= y
	x = x / y (2)

	x %= y
	x = x % y (0)

Operators
	OPERATORS
	WHAT IT DOES

	x + y (Numeric)
	Adds x and y together

	x + y (String)
	Concatenates text x & text y together (ie, "box" + "check" "checkbox")

	x – y
	Subtracts y from x

	x * y
	Multiples x and y together

	x / y
	Divides x by y

	x % y
	Modulus of x and y (ie, the remainder when x is divided by y)

	x++, ++x
	Adds on to x (same as x = x + 1)

	x--, --x
	Subtracts one from x (same as x = x –1)

	-x
	Reverse the sign of x

Unary operators – converts a single expression into a single, more complex expression. The – operator in the expression –3 is a unary operator which performs the operation of negation on the operand 3.

Binary operators – combine two expressions into a single, or more complex expression. They operator on two operands.

Ternary operator (?:) – combines the value of three expressions into a single expression.

var username = prompt("Please enter your name", "");
var greeting = "Hello ";

greeting += ((username != null) ? username : "there");

If the user provides a name, ie. Frank, then we would end up with

greeting == "Hello Frank"

NOTE: is equivalent to the following below

if (username != null) greeting += username;
else greeting += "there";

An example of the ternary operator in "real code" see the Website & page 52.

Logical Operators
There are a group of symbols used in JavaScript that refer to the basic "logical operations". These are AND, OR, and NOT.

Logical Operators
	OPERATOR
	WHAT IT DOES

	&&
	Logical "AND" – returns true when both operands are true; otherwise it returns false

	||
	Logical "OR" – returns true if either operand is true. It only returns false when both operands are false

	!
	Logical "NOT"—returns true if the operand is false and false if the operand is true. This is a unary operator and precedes the operand

As is often the case, the hardest part about learning to use logical operators is remembering what the symbols mean. In most cases, you'll find the basic ideas pretty intuitive as long as you can easily read and write the symbols.
Short-circuit evaluation uses the following rules:

· false && anything is always false

· true || anything is always true

For example:

var x = 10;
var y = 20;

(x > y) && (x < y) // would immediately evaluate to false once the first part of the expression (x > y) is evaluated to false

/* Likewise */

(y > x) || (x > y) // is evaluated to true simply because the first part of the expression (y > x) is true

These examples use comparison operators, which we will be discussing next.

Because the logical "not" operator (!) takes a single operator, there is no short-circuit evaluation for it.

Comparison Operators
You’ll often wan to compare the value of one variable with another, or the value of a variable against a literal value (ie, a value typed into the expression). For example, you might want to compare the value of the day of the week to "Tuesday," and you can do this by checking if todaysDate == "Tuesday".

Tip
If you are comparing strings, be aware that "a" is greater than "A" and that "abracadabra" is less than "be".

Comparisons
	COMPARISONS
	WHAT IT DOES

	x == y
	Returns true if x and y are equal

	x != y
	Returns true if x and y are not equal

	x > y
	Returns true if x is greater than y

	x >= y
	Returns true if x is greater or equal to y

	x < y
	Returns true if x is less than y

	x <= y
	Returns true if x is less or equal to y

	x && y
	Returns true if both x and y are true

	x || y
	Returns true if either x or y are true

	!x
	Returns true if x is false

Note: in JavaScript, all comparison operators are binary operators.

Comparison Rules

· If either or both values are NaN, then they are not equal.

· If both refer to the same Object, Array, or Function, they are equal. If they refer to different Objects (or Arrays or Functions) they are not equal, even if both Objects could be converted to the same primitive value.

· If both are null, or both undefined, they are equal.

· If one value is null and one undefined, they are equal.

If the types of the two values differ, attempt to convert them into the same type so they can be compared.

· If one value is a number and the other is a string, convert the string to a number and try the comparison again, using the converted value.

· If either value is true, convert it to 1 and try the comparison again. If either value is false, convert it to 0 and try the comparison again.

· If one value is an object and the other is a number or string, convert the object to a primitive value by either its toString() method or its valueOf() method. Native JavaScript classes attempt valueOf() conversions before toString() conversion.

· Any other combinations of types are not equal.

Objects, arrays, and functions are compared by reference. This means that two variables are equal only if they refer to the same object. Two separate arrays are never equal by the definition of the == operator, even if they contain identical elements.

Comparison operators can be used to compare numbers as well as strings

1) 1 == 1 (returns ?)
2) 3 < 1 (returns ?)
3) 5 >= 4 (returns ?)
4) "the" != "he" (returns ?)
5) 4 == "4" (returns ?)
6) 4 == "a4" (returns ?)
7) true == 1 (returns ?)
8) true == 0 (returns ?)
9) a == b (returns ?) if a = new Array(1,2) and b = new Array(1,2)

Answers (on the Website)

How to use logical & comparison operators
You can use logical operators to create statements that "evaluate" to either true or false. The following examples illustrate this:

· 5 == 5
This statement evaluates to TRUE because 5 is EQUAL TO 5.

· 5 == 6
This statement evaluates to FALSE because 5 isn't EQUAL TO 6.

· 5 != 6
This statement evaluates to TRUE because 5 is NOT EQUAL TO 6.

· 5==5 && 6==6
This statement evaluates to TRUE because statement one AND statement two are both true.

· 5==5 && 5==6
This statement evaluates to FALSE because statement one AND statement two are not both true, (even though statement one is true).

· 5==5 || 5==6
This statement evaluates to TRUE because either statement one OR statement two is true.

Conditional Operators
Conditional expressions are a little different than the others, because a conditional expression can evaluate to one of two different values based on a condition. The structure of a conditional expression is:

(condition) ? val1 : val2

Note: This should look familiar, remember the ternary operator?

(day == "Saturday") ? "Weekend!" : "Not Saturday!"

Evaluates to "Weekend!" when day is "Saturday". Otherwise, the expression evaluates to "Not Saturday!"

String Operators
Concatenation returns the union of two strings so that

"Welcome to " + "the World of JavaScript"

Evaluates to a single string with the value "Welcome to the World of JavaScript". As with numbers, this can be done with a short cut concatenation operator. For example:

var welcome = "Welcome to ";
welcome += "the World of JavaScript";

would assign the string "Welcome to the World of JavaScript" to the variable welcome.

document.write(welcome + "the World of JavaScript");
document.write(welcome, "the", " World of JavaScript");

would write the string "Welcome to the World of JavaScript" to the document.

Operator Precedence
Because expressions can be the operands for other expressions, it is necessary to understand operator precedence. Operator precedence is the set of rules that determines the order in which these compound expressions are evaluated.

The operators that you have learned are evaluated in the following order (from lowest precedence to highest):

· Assignment operators (=, +=, -=, *=, /=, %=)

· Conditional (?:)

· Logical or (||)

· Logical and (&&)

· Equality (==, !=)

· Relational (<, <=, >=, >)

· Addition/Subtraction (+, -)

· Multiply/divide/modulus (*, /, %)

· Parentheses(())

Examples:

· 5 + 3 * 2 = 11 but (5 + 3) * 2 = 16

· false || true && false ==> false

Conditional Operator Example
(Ternary Operator)

<SCRIPT>

var timeStr, dateStr;

function clock() {

 var now= new Date();

 var hours= now.getHours();

 var minutes= now.getMinutes();

 var seconds= now.getSeconds();

 timeStr= "" + hours;

 timeStr+= ((minutes < 10) ? ":0" : ":") + minutes;

 timeStr+= ((seconds < 10) ? ":0" : ":") + seconds;

 document.clock.time.value = timeStr;

 setTimeout("clock()", 1000);

}

</SCRIPT>

<BODY onLoad="clock();">

<FORM NAME="clock">

 Time: <INPUT TYPE="text" NAME="time" VALUE="">

</FORM>
Annotated "Clock"

Sequence of Events:

· After the Documents gets "loaded" then call the clock function

· Create the Time String

· Place the Time String into the FORM's "time" text field

· Every second call the clock function and put a new Time String into the FORM's "time" text field

<HTML>
<HEAD>

<SCRIPT LANGUAGE="JavaScript">

// define the variables we need for the program
var timeStr, dateStr;
var now, hours, minutes, seconds;

function clock() {
 now = new Date(); // now becomes an instants of the Date Object
 // the getHours() pulls out the Hours from the new now Object
 hours = now.getHours();
 // the getMinutes() pulls out the Minutes from the new now Object
 minutes = now.getMinutes();
 // the getSeconds() pulls out the Seconds from the new now Object
 seconds = now.getSeconds();

 // below we want to create a String, so here we are concatenating
 // an Empty String with a number and we end up with a string.
 timeStr = "" + hours;

 // minutes are shown as :12 or :09 for example, the ternary operator does just that
 // if minutes are < 10 then add :0 before the number of minutes
 // else if the minutes are > 9 then just add : before the number of minutes
 timeStr += ((minutes < 10) ? ":0" : ":") + minutes;
 timeStr += ((seconds < 10) ? ":0" : ":") + seconds;

 // once we have created the time string then place that value into the
 // FORM's "time" field
 document.clock.time.value = timeStr;

 // the setTimeout Method says
 // I want you to call clock() every 1000 milliseconds or every 1 second
 // since there is no prefix for the setTimeout -
 // it means that it is method of the Window Object
 setTimeout("clock()", 1000);

</SCRIPT>

</HEAD>

<BODY onLoad="clock()"> The onLoad Event Handler is executed when the Document or Frameset is fully loaded, which means that all Images have been downloaded and displayed, all subframes have loaded, any Java Applets and Plugins (Navigator) have started running, and so on.

The function clock() will be called after "everything" is loaded

The NAME of the FORM is "clock"
<FORM NAME="clock">
 The NAME of the text field is "time".
 NOTE: the VALUE is an Empty String waiting to be filled with the "TIME".
 Time: <INPUT TYPE="text" NAME="time" VALUE="">
</FORM>

</BODY>
</HTML>

JavaScript Objects

We can begin to look at the actual Objects that JavaScript itself provides. These Objects can be put into the following three categories:

· Built-in Objects & Functions (String, Math, Date, & Functions)

· Browser Objects (document, location, history, navigator, & window)

· HTML Objects

Built-in Objects include String Objects, the Date Object, and the Math Object. They are referred to as Built-in because they really do not have anything to do with Web pages, HTML, URLs, the current browser environment, or anything visual. HTML objects, in turn, are directly associated with elements of Web pages. Every Link and Anchor is a JavaScript Object. Every Form, and every Element within a Form, is an HTML object. The hierarchical organization of display elements on a Web page is reflected almost exactly in a hierarchical set of nested HTML objects.

Browser Objects are at the top of JavaScript's Object hierarchy. These objects represent large scale elements of the browser's current environment, and include Objects such as window (the current window), History (the list of previously visited pages), and Location (the URL of the current page).

The Document Object Model (DOM) is a simple, hierarchical naming system that makes all of the objects in the page, such as images, forms, and even CSS properties, accessible to scripting languages like JavaScript.

Most HTML-based objects have DOM properties that match the attributes in their tags.

Overview of the Navigator Object Hierarchy
	OBJECT
	DESCRIPTION

	navigator
	The navigator object provides properties that expose information about the current browser to JavaScript scripts

	window
	The window object provides methods and properties for dealing with the actual browser window, including objects for each frame

	location
	The location object provides properties and methods for working with the currently open URL

	history
	The history object provides information about the history list and enables limited interaction with the list

	document
	The document object is one of the most heavily used objects in the hierarchy. It contains objects, properties, and methods for working with document elements including forms, links, anchors, and with applets

Built-in Objects
	OBJECT
	DESCRIPTION

	String
	The string object enables programs to work with and manipulate strings of text, including extracting substrings and converting text to upper- or lowercase characters.

	Math
	The Math object provides methods to perform trigonometric functions, such as sine and tangent, as well as general mathematical functions, such as square root

	Date
	With the Date object, programs can work with the current date or create instances for specific dates. The object includes methods for calculating the difference between two dates and working with times.

String Object

String Objects are the most built-in of all the built-in JavaScript Objects. You do not even use the key word new when creating a String Object. Any variable whose value is a string is actually a String Object. Literal strings such as "HelloWorld" are also String Objects.

JavaScript String Manipulation Examples

var myStr = "Let's see what happens!";
document.write(myStr.substring(0, 7)) ==> Let's s
document.write(myStr.fontcolor("green").bold().italics()) ==> Let's see what happens!
document.write("Hello World!".fontcolor("green").bold().italics()) ==> Hello World!
document.write("Hello World!".fontsize(-1)) ==> Hello World!

String Objects have one Property, length, and many Methods. The length Property gives the length of the String. The methods fall into three categories:

· Methods that manipulate the contents of the String

· Methods that manipulate the appearance of the String

· Methods that convert the String into an HTML element

String Content Methods
The following methods can be used on String Objects to access, control, or modify their content:

var myStr = "Let's see what happens!";
Displaying Subsets of Strings
	METHOD NAME
	EXAMPLE
	RETURNED VALUE

	charAt
	myStr.charAt(0)
	L

	
	myStr.charAt(10)
	w

	indexOf
	myStr.indexOf("at")
	12

	
	myStr.indexOf("e")
	1

	
	myStr.indexOf("e", 2)
	7

	lastIndexOf
	myStr.lastIndexOf("a")
	16

	
	myStr.lastIndexOf("a", 14)
	12

	substring
	myStr.substring(0, 7)
	Let's s

	
	myStr.substring(7, 0)
	Let's s

	
	myStr.substring(0, 50)
	Let's see what happens!

	
	myStr.substring()
	Let's see what happens!

	
	myStr.substring(4)
	s see what happens!

	length
	myStr.length
	23

	
	myStr.substring(0, 7).length
	7

Property
myStr.length == 23 (the only property associated with the String Object)

The methods charAt and substring are used to extract either a single character from a string, at position index, or to extract a range of characters, from position from-index up to but not including position to-index. Character positions are zero-based, as are all JavaScript arrays, so that all indices must fall between 0 and one less than the length of the array. For example, using myStr, we have

Methods
myStr.charAt(6) == "s"
myStr.substring(6, 8) == "se"

These methods both return strings. Care should be take to give these methods valid indices that are actually within the string. The substring method will forgive you if you accidentally specify a to-index which is <= the corresponding from-index, it will return the empty string "".

Finally, both the indexOf and lastIndexOf methods are used to search for char with a string. indexOf searches from the beginning (left side) of the string and lastIndexOf searches from the end (right side). Both return an integer index if they find the character, and -1 if they do not. Using myStr again, we can search for the character o from both sides:

Methods
myStr.indexOf("a") == 12
myStr.lastIndexOf("a") == 16

The first search finds the first a of the word "what" at position 12, and the second search finds the second a of the "happens" since that is the first a when searching from right to left. Both of these methods also take an optional second argument that specifies an initial index at which to start the search.

Output for the above examples on the Website

String Appearance Methods
The code that produced the above anchor & appearance of the String:

var strAppear = "String Appearance Methods";
var tarAppear = "Appear";
document.write(strAppear.bold().anchor(tarAppear));

The above example will be discussed in Methods that convert the String into an HTML element.

The string appearance methods are used to control how a string appears when displayed on a Web page. If you are creating a page with standard HTML tags you would achieve the same effects by using various tags. For example, to make the string "help" appear in italics you would write <I>help</I>. The string appearance methods allow you to obtain the same effects in JavaScript without using the corresponding HTML elements. The string appearance methods are as follows:

String Object Methods for HTML Formatting
	NAME
	EXAMPLE
	RETURNED VALUE

	big
	"foo".big()
	<BIG>foo</BIG>

	blink
	"foo".blink()
	<BLINK>foo</BLINK>

	bold
	"foo".bold()
	foo

	fixed
	"foo".fixed()
	<TT>foo</TT>

	fontcolor
	"foo".fontcolor("green")
	foo

	fontsize
	"foo".fontsize(-1)
	foo

	italics
	"foo".italics()
	<I>foo</I>

	small
	"foo".small()
	<SMALL>foo</SMALL>

	strike
	"foo".strike()
	<STRIKE>foo</STRIKE>

	sub
	"foo".sub()
	_{foo}

	sup
	"foo".sup()
	^{foo}

	toLowerCase
	"UPPERcase".toLowerCase()
	uppercase

	toUpperCase
	"UPPERcase".toUpperCase()
	UPPERCASE

The toLowerCase and toUpperCase methods convert the contents of the string entirely to lower - and uppercase, respectively. In addition, we can apply the two case conversion methods and get

var myStr = "Let's see what happens!"
Methods
myStr.toLowerCase() == "let's see what happens!"
myStr.toUpperCase() == "LET'S SEE WHAT HAPPENS!"

These two functions do nothing to characters that have no case, so the two spaces in this string are unchanged. We could have also applied the methods directly to the literal form of this string object, so "Look At This".toLowerCase() is also equal to "look at this".

Most of these methods should be self-explanatory. The italics method, for example, performs exactly the same function as the <I> tag in HTML. The only two that take arguments are the fontcolor and fontsize methods. The fontcolor method changes the font color of the string, as if the attribute had been size. Similarly, the fontsize method changes the size of the font used for displaying a string as if the attribute had been given. color should be a string; size may be a number or a string. If it's a number then this specifies an absolute font size; if it's a string such as "+2" it specifies an increment relative to the current font size. The listing below shows several examples using the string appearance methods.

NOTE: Not all HTML style tags have corresponding string appearance methods. You can always directly embed an HTML tag in the string itself if there is no method with the same functionality.

String Methods Can Be Used to Change How Strings Are Displayed
var bStr = "big";
var sStr = "small";

/* This displays strings with both big and small text. */

document.write("
This is " + bStr.big() + " text");
document.write("
This is " + sStr.small() + "text");

//The following two strings contain directly embedded HTML tags.
//They have exactly the same result as the two method calls above

document.write("
This is <BIG>big</BIG> text");
document.write("
This is <SMALL>small</SMALL> text");
document.write("
This is strong text");
document.write("
");

Output for the above code on the Website

HTML String Methods
JavaScript provides two string methods for converting strings into hypertext entities. These methods should be clearly distinguished from the HTML objects, such as forms, which are discussed in the section "Browser and HTML Objects". These methods are used to create HTML, while the HTML objects already are HTML. The two methods in this category are as follows:

HTML String Methods
	NAME
	EXAMPLE
	RETURNED VALUE

	anchor
	"foo".anchor("anchortext")
	foo

	link
	"foo".link("linktext")
	foo

· aString.anchor(NAMEstr) - the value of the NAME attribute of <A> -- the name of the anchor to be created. It returns a copy of string, enclosed within

 aString HTML tags.

· aString.link(HREFstr) - add a hypertext link to a string. The URL target of the hypertext link is to be added to the string. This string argument specifies the value of the HREF attribute of the <A>. It returns a copy of string, enclosed within

 aString HTML tags.

The listing below uses these methods and shows a simple example that sets up an anchor target and then links to it.

String Methods Can Be Used to Create HTML Anchors and Links
var strAppear = "String Appearance Methods";
var tarAppear = "Appear";

document.write(strAppear.anchor(tarAppear));

produces the output below:

String Appearance Methods

document.write("Click here to view " + strAppear.link(#" + tarAppear));

 produces the output below:

Click here to view
String Appearance Methods

String Appearance Methods Click here to view String Appearance Methods

HTML String Methods

document.write("ESPN Sports".link("http://espn.go.com")) ==> ESPN Sports
–– OR ––
var Link = "http://espn.go.com";
var desc = "EPSN Sports";

document.write(desc.link(Link)) ==> EPSN Sports
Math Object

The Math object is used for various forms of mathematical calculations. It contains several properties that are standard constants, such as pi = 3.14159…, as well as a large set of methods that represent common trigonometric and algebraic functions. All Math methods deal with floating-point numbers. Angles are expected to be given in radians, not degrees.

The Math object is our first example of a static object. A static object is one that does not change. All of the slots in the Math object already have values. This makes perfect sense, since you cannot change the value of pi or invent a new meaning for the cos() function (not without creating chaos). The practical consequence of Math being static is that you never use new with Math; you always refer to the Math object directly. Math is the opposite of the String object. The String object has instances but no explicit object; the Math object has only itself, and no instances.

Math Object Properties
	METHOD NAME
	EXAMPLE
	RETURNED VALUE

	E
(2.718281828459045091)
	Math.E * 5
	13.59140914229522501

	LN10
(2.302585092994045901)
	Math.LN10 / 6
	0.3837641821656743168

	LN2
(0.69314718055994529)
	Math.LN2 - Math.E
	-2.025134647899099694

	PI
(3.141592653589793116)
	Math.sin(2 * Math.PI / 4)
	0.2741213359

	SQRT2
(1.414213562)
	1 / Math.SQRT2
	0.7071067811865474617

Math Object Methods
	METHOD NAME
	EXAMPLE
	RETURNED VALUE

	abs
	Math.abs(-6.5)
	6.5

	acos
	Math.acos(.5)
	1.047197551196597631

	asin
	Math.asin(1)
	1.570796326794896558

	atan
	Math.atan(.5)
	0.4636476090008060935

	ceil
	Math.ceil(7.6)
	8

	cos
	Math.cos(.4)
	0.9210609940028851028

	exp
	Math.exp(8)
	2980.957987041728302

	floor
	Math.floor(8.9)
	8

	log
	Math.log(5)
	1.609437912434100282

	max
	Math.max(1 , 700)
	700

	min
	Math.min(1 , 700)
	1

	pow
	Math.pow(6, 2)
	36

	random
	Math.random()
	.7877896

	round
	Math.round(.567)
	1

	sin
	Math.sin(Math.PI)
	0

	sqrt
	Math.sqrt(9801)
	99

	tan
	Math.tan(1.5 * Math.PI)
	INF (infinity)

Using Math PI & Sqrt

<FORM>
 Enter the radius of a circle: <INPUT TYPE="text" NAME="number">
 <INPUT TYPE="button" VALUE="Find the circumference"
 onClick="form.result1.value = 2 * Math.PI * form.num.value">
 <INPUT TYPE="text" NAME="result1">
 <INPUT TYPE="button" VALUE="Find the square root of the first number"
 onClick="form.result2.value = Math.sqrt(form.num.value)">
 <INPUT TYPE="text" NAME="result2">
</FORM>

NOTES:

1. A form element named abc can be accessed through JavaScript as form.abc (if the form is given a name, say "stuff" in the <FORM> tag, this name can also be used to access a form element, e.g., stuff.abc.

2. The value of some elements, for example of text input elements, can not only be accessed but also changed via form.abc.value.

3. <INPUT TYPE="button" VALUE="Find the circumference"
 onClick="form.result1.value = 2 * Math.PI * form.num.value">
adds a button form element to the form. When the button is clicked JavaScript takes the value in the form element named "number" (i.e., form.number.value) and multiples that number by 2 and Math.PI - giving us the circumference of a circle. This is then assigned to form.result1.value, setting the value of the "result1" element (input box) in the form.

4. When the 2nd button is clicked JavaScript takes the value in the form element named "number" (i.e., form.number.value) and passes that number to Math.sqrt. The value returned is just the square root of the argument. This is then assigned to form.result2.value, setting the value of the "result2" element (input box) in the form.

When a number may be entered into the form's "number" element and one of the buttons is pressed, the number's square root or circumference is calculated, depending on which button is pressed. The results of the calculation are displayed in the form's "result1" element or the form's "result2" element depending on which button is clicked.

Calculating the Square or Square Root

This example illustrates a little of JavaScript's mathematical abilities. It also shows how you can use a form for input/output with JavaScript without having to submit the form to a server.
 The code that lets us create this mini-calculator is:

<FORM>
 <INPUT TYPE="text" NAME="number" VALUE="0">
 <INPUT TYPE="text" NAME="answer" VALUE="0">
 <INPUT TYPE="button" NAME="sqrt" VALUE="SqrRt"
 onClick= "form.answer.value=Math.sqrt(form.number.value)">
 <INPUT TYPE="button" NAME="square" VALUE="x ^ 2"
 onClick= "form.answer.value=Math.pow(form.number.value, 2)">
</FORM>

NOTES:

1. A form element named abc can be accessed through JavaScript as form.abc (if the form is given a name, say "stuff" in the <FORM> tag, this name can also be used to access a form element, e.g., stuff.abc.

2. The value of some elements, for example of text input elements, can not only be accessed but also changed via form.abc.value.

3. <INPUT TYPE="button" NAME="sqrt" VALUE="SqrRt"
 onClick= "form.answer.value=Math.sqrt(form.number.value)">
adds a button form element named "sqrt" to the form; "SqrRt" is the label of the button. When the button is clicked JavaScript takes the value in the form element named "number" (i.e., form.number.value) and passes that number to Math.sqrt. The value returned is just the square root of the argument. This is then assigned to form.answer.value, setting the value of the "answer" element (input box) in the form.

4. The onClick for the button named "square" works similarly, except that it passes the value entered in the form's "number" element to the pow method of the Math Object (i.e., to Math.pow). This object takes two arguments and raises the first argument to the power of the second.

Thus a number may be entered into the form's "number" element. When one of the buttons is pressed, the number's square root or square is calculated, depending on which button is pressed. The results of the calculation are displayed in the form's "answer" element.

With a little more work, you can even create a real JavaScript calculator.

Date Object
JavaScript does not have a date data type. However, the date object and its methods enable you to work with dates and times in your applications. The date object has a large number of methods for getting, setting, and manipulating dates. It does not have any properties.

JavaScript handles dates very similarly to Java. The two languages have many of the same date methods, and both languages store dates as the number of milliseconds since January 1, 1970 00:00:00.

To create a date object:

var varName = new Date(parameters)

where varName is a JavaScript variable name for the date object being created; it can be a new object or a property of an existing object.

The parameters for the Date constructor can be any of the following:

· Nothing: creates today's date and time. For example, var now = new Date()

· A string representing a date in the following form: "Month day, year hours:minutes:seconds". For example, Xmas95= new Date("December 25, 1995 13:30:00") If you omit hours, minutes, or seconds, the value will be set to zero.

· A set of integer values for year, month, and day.
For example, Xmas95 = new Date(95,11,25)

· A set of values for year, month, day, hour, minute, and seconds
For example, Xmas95 = new Date(95,11,25,9,30,0)

The Date object has a large number of methods for handling dates and times. The methods fall into these broad categories:

· "get" methods, for getting date and time values from date objects

· "set" methods, for setting date and time values in date objects

· "to" methods, for returning string values from date objects.

· parse and UTC methods, for parsing date strings.

The "get" and "set" methods enable you to get and set seconds, minutes, hours, day of the month, day of the week, months, and years separately. There is a getDay method that returns the day of the week, but no corresponding setDay method, because the day of the week is set automatically. These methods use integers to represent these values as follows:

· seconds and minutes: 0 to 59

· hours: 0 to 23

· day: 0 to 6 (day of the week)

· date: 1 to 31 (day of the month)

· months: 0 (January) to 11 (December)

· year: years since 1900

For example, suppose you define the following date:

var Xmas95 = new Date("December 25, 1995");

Then Xmas95.getMonth() returns 11, and Xmas95.getYear() returns 95.

The getTime and setTime methods are useful for comparing dates. The getTime method returns the number of milliseconds since the epoch for a date object.

For example, the following code displays the number of shopping days left until Christmas:

var now = new Date();
var nextXmas = new Date("December 25, 2001");
var msPerDay = 24 * 60 * 60 * 1000 ; // Number of milliseconds per day
var daysLeft = (nextXmas.getTime() - now.getTime()) / msPerDay;
daysLeft = Math.round(daysLeft);
document.write("Number of Shopping Days until Christmas: " + daysLeft);

This example creates a date object named today that contains today's date. It then creates a date object named nextXmas, and sets the year to the current year. Then, using the number of milliseconds per day, it computes the number of days between today and nextXmas, using getTime, and rounding to a whole number of days.

The parse method is useful for assigning values from date strings to existing date objects. For example, the following code uses parse and setTime to assign a date to the IPOdate object.

var IPOdate = new Date();
IPOdate.setTime(Date.parse("Aug 9, 2001"));

Dealing with dates is one of the most tedious tasks in any language. This is because many people like to represent dates and times in decidedly non-decimal systems. Months come in units of 12, hours in units of 24, and minutes and seconds in units of 60. All these variations are quite illogical from the computer's standpoint. It likes to deal with nice, round numbers, preferably powers of 2, or at least multiples of 10.

The Date object has no properties, but many methods. In order to use the Date object you must first understand how to construct instances of it. There are three basic methods of creating a Date instance, as follows:

· new Date()

· new Date(datestring)

· new Date(yr, mon, day)

The first form constructs a Date instance that represents the current date and time. This should be accurate to within a second, and also include information about your time zone and any corrections to it currently in effect (such as Daylight Savings Time). The second form takes a string of the form "Month Day, Year" such as "November 23, 1990" and converts it to a Date instance. This string may optionally have a time of the form HH:MM:SS at the end, which is used to set the time to HH hours, MM minutes, and SS seconds. Hours should be specified using a 24-hour clock, also known as military time, so that 10:15 PM is represented as 22:15:00. The third form takes three integers representing the year, month, and day. Note that the month is always indexed from zero, so that November is month 10. The year can also be offset by 1900, so that you can use either of these two forms

var NovDate = new Date(90, 10, 23);
var NovDate = new Date(1990, 10, 23);

to create a Date instance named NovDate for November 23, 1990. Note that for the year 2000 and beyond you must use the second form. This form may optionally take an additional three integer arguments for the time, so that 1:05 PM on November 23, 1990 is

var NovDate2 = new Date(90, 10, 23, 13, 5, 0);

The Date object has a large set of methods for getting and setting the components of a date. These methods are as follows:

Date Object Methods
	NAME
	EXAMPLE
	RETURNED VALUE

	getDate
	now.getDate()
	5

	getDay
	now.getDay()
	2

	getHours
	now.getHours()
	5

	getMinutes
	now.getMinutes()
	30

	getMonth
	now.getMonth()
	6

	getSeconds
	now.getSeconds()
	13

	getTime
	now.getTime()
	the internal, millisecond representation of a Date object

	getTimeZoneoffset
	now.getTimeZoneoffset
	time zone difference, in minutes, between this date and GMT

	getYear
	now.getYear
	99 (the years since 1900)

	parse
	NovDate.parse(July 1, 1996)
	converts a string representation of a date to the internal milliseconds representation

	setDate
	someDate.setDate(6)
	-

	setHours
	someDate.setHours(14)
	-

	setMinutes
	someDate.setMinutes(50)
	-

	setMonth
	someDate.setMonth(7)
	-

	setSeconds
	someDate.setSeconds(7)
	-

	setTime
	someDate.setTime(yesterday.getTime())
	-

	setYear
	someDate.setYear(88)
	-

	toGMTString
	now.toGMTString()
	Tues, Sept 21 1999 14:28:15 GMT

	toLocaleString
	now.toLocaleString()
	9/21/99 14:28:15

	UTC
	someDate.UTC(99, 11,3,0,0,0)
	-

Using all these methods' strings and numbers may look like a daunting task, but if you approach the Date object with a few concepts in mind, it makes working with this object much easier.

First, all of the methods can be grouped into four categories: get, set, to, and parse. get methods simply return an integer corresponding to the attribute you requested. set methods allow you to change an existing attribute in a Date object-again by passing an integer-only this time you are sending a number instead of receiving it. to methods take the date and convert it into a string-which then allows you to use any of the string methods to further convert the string into a useful form. parse methods (parse and UTC) simply parse-or interpret-date strings.

Secondly, Date attributes like month, day, or hours are all zero-based numbers. That is, the first month is 0, the second 1, and so on. The same goes for days, where Sunday is 0, Monday is 1, and so on. The reason why numbering starts at 0 instead of 1 is that JavaScript closely mirrors Java in many respects-like always starting an array of "things" with 0. This is a convention followed by many languages and is considered a good programming practice.

Date Object Number Conventions
	DATE ATTRIBUTE
	NUMERIC RANGE

	seconds, minutes
	0 - 59

	hours
	0 - 23

	day
	0 - 6
(0 = Sunday, 1 = Monday, and so on)

	date
	1 - 31

	month
	0 - 11
(0 = January, 1 = February, and so on)

	year
	0 + number of years since 1900

In addition to the get and set methods, the Date object also has methods for converting a Date instance to a string, and two static methods for parsing dates. These methods are as follows:

· toGMTString()

· toLocaleString()

· toString()

· parse(datestr)

· UTC(datestr)

The first three of these methods convert a date instance into a string representing the date and time relative to Greenwich Mean Time (GMT, also called UTC for Universal Coordinated Time), relative to the current date formatting conventions (which vary between Europe and the U.S., for example), and as just a plain, ordinary string, respectively. The last two methods are used for converting date strings in local time (parse method) or in UTC time (UTC method) into the number of milliseconds since The Epoch. These methods must be referenced as Date.parse() and Date.UTC() since they are static; they may not be used with Date instances. Since they return the internal representation of dates, these values are often simply passed to setTime.

Date Object

Today's date is: Fri Dec 29 00:59:10 PST 2000.

The above piece of information is brought to you by the following JavaScript snippet:

var now = new Date();
document.write("Today's date is: " + now + ".
");

In this section of code now = new Date() creates a date object named now, which is then printed with document.write.

Getting the Time via a Link
What time is it now? (Move the mouse over the link several times and note that the date and time stay the same as printed above.)

This example uses:

What time is it

now
?

NOTES:

1. As above, the present date is gotten from now = new Date(); but this happens only once, when the page is loaded, so the value of now is not updated.

2. When you move the mouse over the link, the value of now is displayed (but since this value is only defined once, the time is not updated).

And what time is it now? (Move the mouse over the link several times and note that here the time does change.)

The JavaScript code in this case is:

function getTime() {
 var now = new Date();
 window.status = 'The time is ' + now;
}

And what time is it now?

NOTES:

1. Moving the mouse over the "now" link causes the user-defined function getTime() to be called. This sets now = new Date() to the current time and displays it on the status bar.

2. Since getTime() is called each time the mouse is placed over the "now" link, the now variable is updated each time. Consequently the present date and time are shown.

You can extract parts of a date object by using its various methods. The following methods return the indicated date parts:

1. getDay() -- day of the week (a number between 0 -- 6)

2. getMonth() -- month of the year (a number between 0 -- 11)

3. getDate() -- day of the month (a number between 1 -- 31)

4. getHours() -- hour of the day (a number between 0 -- 23)

5. getMinutes() -- minutes after the hour (a number between 0 --59)

6. getSeconds() -- (a number between 0 --59)

7. getYear() -- the last two digits of the year

Finally, you can even have JavaScript add a digital clock or a calendar to your page. Several of these types of examples will be covered next week.

Built-In Functions
You have now had your first exposure to the built-in String, Math, and Date Objects. Some of these Objects are more built-in than others. While Date acts like an actual Object, with the exception of its two static methods, the String object is almost invisible. All normal JavaScript programs manipulate strings as if they are a separate data type. The essence of a string is part of the JavaScript language.

There is also a small set of Built-in Functions to JavaScript itself. They are not methods, and are never applied to an instance using the dot operator (.). They are on the same plane as functions that you create using the function keyword. At present, there are 5 such Built-in Functions; they are as follows:

escape() & unescape()

The purpose of the escape() encoding is to ensure that the string is portable to all computers and transmittable across all networks, regardless of the character encoding the computer or networks support (as long as they support ASCII).

The escape() and unescape() functions are used to convert to and from the escape code convention used by HTML. In HTML a number of special characters, such as the HTML delimiters < and >, must be represented in a special way to include them in ordinary text. For example, if you have written any HTML at all then you know that you sometimes need to write %20 to represent a space character. The escape() Built-in Function takes a string representing one of these special characters and returns its escape code in the form %xx, where xx is a two-digit Hexadecimal number.

escape(" ") -- returns %20 -- the code for a space character.
unescape("%20") -- returns the string " " -- a single space character.

eval()

The built-in function eval() takes a string as its argument. The string can be is any string representing a JavaScript expression, statement, or sequence of statements. The expression can include variables and properties of existing objects.

If the argument represents an expression, eval() evaluates the expression. If the argument represents one or more JavaScript statements, eval() performs the statements. All the normal rules for evaluating expressions, including variable substitution, are performed by the eval function. This function is extremely powerful simply because it evaluates any JavaScript expression, no matter what that expression does. You will see a lot more of this function in several subsequent lessons. For the moment, we briefly look at a simple example in which we ask eval() to do some arithmetic for us. If x is a var with the value of 10 then the following two expressions assign 146 to both y and z:

y = (x * 14) - (x / 2) + 11;
z = eval("(x * 14) - (x / 2) + 11");

This function is useful for evaluating a string representing an arithmetic expression. For example, input from a form element is always a string, but you often want to convert it to a numerical value.

The following example takes input in a text field, applies the eval function and displays the result in another text field. If you type a numerical expression in the first field, and click on the button, the expression will be evaluated. For example, enter "(666 * 777) / 3", and click on the button to see the result.

<SCRIPT>

function compute(form) {
 form.result.value = eval(form.expr.value);
}

</SCRIPT>

<FORM NAME="evalform">
 Enter an expression: <INPUT TYPE="text" NAME="expr">
 Result: <INPUT TYPE="text" NAME="result">
 <INPUT TYPE="button" VALUE="Click Me" onClick="compute(this.form)">
</FORM>

The eval function is not limited to evaluating numerical expressions, however. Its argument can include Object References or even JavaScript statements. For example, you could define a function called setValue that would take two arguments: and object and a value, as follows:

function setValue(myObj, myValue) {
 eval ("document.forms[0]." + myObj + ".value") = myValue;
}

Then, for example, you could call this function to set the value of a form element "text1" as follows:

setValue(text1, 42)

parseInt() and parseFloat()

These two built-in functions return a numeric value when given a string as an argument.

parseFloat() parses its argument, a string, and attempts to return a floating point number. If it encounters a character other than a sign (+ or -), numeral (0 - 9), a decimal point, or an exponent, then it returns the value up to that point and ignores that character and all succeeding characters. If the first character cannot be converted to a number, it returns NaN.
The parseInt() parses its first argument, a string, and attempts to return an integer of the specified radix (base). For example, a radix of 10 indicates to convert to a decimal number, 8 octal, 16 hexadecimal, and so on. For radixes above 10, the letters of the alphabet indicate numerals greater than 9. For example, for hexadecimal numbers (base 16), A through F are used.

If parseInt encounters a character that is not a numeral in the specified radix, it ignores it and all succeeding characters and returns the integer value parsed up to that point. If the first character cannot be converted to a number in the specified radix, it returns NaN. parseInt() truncates numbers to integer values.

parseFloat("+3.14williamtell5") = 3.14
parseInt(10111, 2) = 23 // base 2

Note that everything after the first w is ignored, since w cannot possibly be part of a floating-point number. The second value is obtained because 23 in binary (base 2) notation is 10111.

Three Types of Dialog Boxes in JavaScript

alert()
The simplest to direct output to a dialog box is to use the alert() method.

alert("Click Ok to continue.");

NOTICE: that the alert() method doesn’t have an object name in front of it. This is because the alert() method is part of the window Object. As the top-level object in the Navigator Object Hierarchy, the window Object is assumed when it isn’t specified.

The script alert("Click Ok to continue."); and HTML holding the script will not continue or execute until the user clicks the OK button.

Generally, the alert() method is used for exactly that – to warn the user or alert him or her to something. Examples of this type of use include:

· Incorrect information in a form

· An invalid result from a calculation

· A warning that a service is not available on a given date

Nonetheless, the alert() method can still be used for friendlier messages.

NOTICE: that JavaScript alert boxes include the phrase "JavaScript Alert" at the start of the message. All dialog boxes generated by scripts have similar heading in order to distinguish them form those generated by the operating system or the browser. This done for security reasons so that malicious programs cannot trick users into doing things they don’t want to do.

<INPUT TYPE="button" VALUE="alert" onClick="alert('This is an alert!!')">

-- OR --

<INPUT TYPE="button" VALUE="alert" onClick="window.alert('This is an alert!!')">
prompt()
The alert() method still doesn't enable you to interact with the user. The addition of the OK button provides you with some control over the timing of events, but it still cannot be used to generate any dynamic output or customize output based on user input.

The simplest way to interact with the user is with the prompt() method. The user needs to fill in the field and then click OK.

prompt("Enter Your Name:", "Name");

· Note 1: you are providing two "arguments" to the method in the parenthesis. The prompt() method "requires two pieces of information". The first is text to be displayed, and the second is the default data in the entry field.

· Note 2: In JavaScript, when a method requires more than one argument, they are separated by commas.

<INPUT TYPE="button" VALUE="prompt" onClick="respPrompt()">

The prompt() method dialog box allows the user the opportunity to enter information. It takes two parameters; a message and a default string for the text entry field.

With function code:

<SCRIPT LANGUAGE="JavaScript">

function respPrompt() {
 var favorite = prompt('What is your favorite color?', 'RED');
 // OR var favorite = window.prompt('What is your favorite color?', 'RED');

 // if (favorite) is equivalent to if (favorite != null && favorite != "")
 if (favorite) alert("Your favorite color is: "+ favorite);
 else alert("You pressed Cancel or no value was entered!");
}

</SCRIPT>

NOTE: What happens when you press Cancel? The value null is returned.

confirm()
Confirm displays a dialog box with two buttons: OK and Cancel. If the user clicks on OK the window method confirm() will return true. If the user clicks on the Cancel button confirm() returns false.

<INPUT TYPE="button" VALUE="confirm" onClick="respConfirm()">

The confirm dialog box returns a Boolean value based on the user's selection.
With function code:

<SCRIPT LANGUAGE="JavaScript">

function respConfirm () {
 var response = confirm('Confirm Test: Continue?');
 // OR var response = window.confirm('Confirm Test: Continue?');

 if (response) alert("Your response was OK!")
 else alert("Your response was Cancel!")
}

</SCRIPT>

NOTE: response will be:

· true if OK is pressed

· false if Cancel is pressed
57

_1046180578.unknown

_1046180579.unknown

_1046180576.unknown

